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Abstract. This paper presents an analytical characterization of the long run policies

learned by algorithms that interact repeatedly. The algorithms observe a state variable

and update policies to maximize long term discounted payoffs. I show that their long run

policies correspond to equilibria that are stable points of a tractable differential equation.

As an example, I consider a repeated Cournot game, for which learning the stage game

Nash equilibrium serves as non-collusive benchmark. I give necessary and sufficient con-

ditions for this Nash equilibrium to be learned. State variables play an important role:

With the previous period’s price as a state variable, the Nash equilibrium can be learned.

On the other hand, I present richer types of state variable, under which the Nash equilib-

rium will never be learned, while collusive equilibria may be learned. State variables exist

that enable the learning of the best strongly symmetric equilibrium of nearby discretized

repeated games.
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1. Introduction

More and more companies are using artificial intelligence (AI)-based tools to try to

optimize sales and increase profits. Such algorithms take market data to determine current

price or quantity levels, updating in real-time. Algorithms can help firms adapt to rapidly

changing market environments, and potentially better serve their markets. However, recent

empirical1 and simulation-based2 studies show that algorithms may learn to collude. Which

algorithms, and which markets, are likely to support such outcomes?

While the folk theorem tells us the set of possible payoffs rational players may achieve

in a repeated interaction, the outcomes to algorithmic learning may not even constitute a

subset of these. This paper is concerned with the analytical properties of these outcomes

for a common family of reinforcement learning (RL) algorithms.

I first introduce a model of RL algorithms that repeatedly play a game. While the results

are more general, the leading application considered is Cournot quantity competition. The

algorithms observe a common state variable without knowing their payoff function or state

transition likelihoods, and adapt by repeatedly experimenting with quantity choices and

estimating a value function. I show that to pin down the long-run behavior of this system,

it is enough to find the stable rest points of a differential equation.

Next, I use this characterization to study whether the algorithms can learn to repeat

the static Nash equilibrium, which we can think of as the non-collusive benchmark. It

turns out that the answer depends on what state variables these algorithms keep track

of, and how these states evolve as a function of past prices and quantities. For instance,

in the case where the state variable is the past period’s price alone, learning the static

Nash equilibrium comes down to a condition on the stage game payoff function alone. In

contrast, I construct a richer state variable under which the static Nash equilibrium may

not be learned, even if it had been learned under the past period’s price state.

Finally, I study the channels through which the algorithms learn to collude. The rich

state variable I constructed supports a symmetric binary-state equilibrium that in one state

1Studying the German gasoline retail market, Assad et al. (2020) observe that after a critical mass of firms
deployed pricing algorithms, profit margins rose by 28%.
2Klein (2021), Calvano, Calzolari, Denicoló, et al. (2021) show that algorithms may learn to play repeated
game strategies akin to typical carrot-and-stick type strategies studied in the economic theory literature.

1



plays collusive, low quantities, and high punishment quantities in the other. Through an

approximation exercise, I show that such collusive equilibria are closely related to optimal

imperfect monitoring equilibria of the bang-bang kind, as characterized in Abreu, Pearce,

and Stacchetti (1986). I provide sufficient conditions for this scheme to be learned with

positive probability.

Related Literature

This project speaks to results in the fast-growing literature on algorithmic collusion, the

theory of learning in games, as well as the study of asymptotic behavior of algorithms in

the computer science literature. A more detailed discussion can be found in the online

appendix.

Firstly, the literature on algorithmic collusion has received increasing attention in recent

years. Assad et al. (2020) provide an empirical study supporting the hypothesis that

algorithms may learn to play collusively, while there are many simulation studies suggesting

the same, of which Calvano, Calzolari, Denicolo, et al. (2020), Calvano, Calzolari, Denicoló,

et al. (2021), and Klein (2021) are important examples. A paper close in spirit to this study

is Banchio and Mantegazza (2022). They consider a fluid approximation technique related

to the stochastic approximation approach applied here, and recover interesting phenomena

regarding the learning of cooperation for a class of RL algorithms. Meylahn and V. den Boer

(2022), Loots and denBoer (2023) use ODE methods related to the ones used in this paper

to prove that specific algorithms can learn to collude in a pricing game. Further important

recent work in the area of algorithmic collusion includes Lamba and Zhuk (2022), Brown

and MacKay (2021), Johnson, Rhodes, and Wildenbeest (2020), and Salcedo (2015). These

papers feature stylized models of algorithmic competition, abstracting away from issues of

learning and estimation, which are an important aspect of my analysis.

Secondly, this paper connects to a the theory of learning in games. Classically, this

literature has been concerned with the ability of agents to learn a Nash equilibrium of

the stage game when following a given learning rule (e.g. Milgrom and Roberts (1991),

Fudenberg and Kreps (1993)). More recent results concern learning in stochastic games

(e.g. Leslie, Perkins, and Xu (2020)), where the state variable is taken as an exogenous
2



object. The class of algorithms studied here has the ability to learn repeated game strategies,

i.e. strategies that condition on summaries of the history of the game, implemented as

automaton strategies. The games that can be studied here therefore contain stochastic

games as a special case, but also allow for the case where the state that agents observe

represents a finite history of the repeated interaction.

My class contains algorithms that impose little informational assumptions as a special

case, known as “model free”. Such algorithms do not carry a model of opponent behavior,

and also no model of their environment and own payoffs. Thus, this class falls into the

family of adaptive uncoupled learning rules as defined in Hart and Mas-Colell (2003). To

the best of my knowledge, the study of uncoupled learning to collude in an oligopoly

game based on the canonical game of Abreu, Pearce, and Stacchetti (1986) is new to this

paper. Further foundational papers in this literature include Milgrom and Roberts (1990)

, Fudenberg and Levine (2009), Gaunersdorfer and Hofbauer (1995), and many more.

Thirdly, this paper makes use of an extensive body of research related to stochastic

approximation theory (see e.g. Borkar (2009)) and hyperbolic theory (Palis Jr, Melo, et al.

(1982)). There is a growing strand of the computer science literature devoted to establishing

convergence proofs in multi-agent algorithmic environments. The paper in that area closest

to this one is Mazumdar, Ratliff, and Sastry (2020).

2. Multi-Agent Learning

This section introduces the updating rule (algorithm) and main assumptions used as run-

ning example in this paper. The algorithm is known as actor-critic Q-learning (ACQ). These

algorithms keep track of an estimated performance criterion (the “critic”, or Q-function,

essentially a value function) and a policy function (the “actor”) that is updated towards the

maximizer of the performance criterion. The policy is a mapping from observables (states),

such as past prices or other market data, to actions, e.g. prices or quantities. A main ad-

vantage of ACQ over the simpler and more commonly known Q-learning (Watkins (1989))

is that it directly applies to continuous-action problems, which are the focus of this paper.

The results presented in this paper are not unique to the case of a Q-function used as the

critic. A broader characterisation of algorithms for which the results stated here hold, is
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relegated to the online appendix. Actor-critic reinforcement learning, which is a superset

of the class studied here, has become popular in the reinforcement learning commmunity,

due to better performance stemming from variance reduction and higher flexibility than

pure critic- or actor-based methods (Q-learning being a critic-based method). See e.g. the

substantial popularity of PPO (Schulman et al. (2017)).

There are N algorithms indexed by i, each having as action space a compact interval

Xi, with profile space X = ×iXi. A state variable S taking values in space S with |S| = L

comes with a transition probability function, twice differentiable in X, P : S2×X 7→ [0, 1].

Furthermore, after defining its transition probability function, I will refer to a state space S

keeping implicitly in mind that it comes with its own transition probability. Each algorithm

has a payoff function ui : X× S 7→ R, C23 in X, and common discount factor δ ∈ (0, 1).

Throughout, it is important to keep in mind that I define an environment competed

on not by rational agents, but by algorithms constrained to play policies based on a fixed

domain: S. I will take S as an exogenous object chosen by whoever initialized the algorithm.

I will assume throughout that the state variable and current state s is a common observable

to all algorithms.

Algorithms update a policy function ρit : S 7→ Xi. Since states are finite, policy profile

ρt ∈ X = XNL can be represented as a vector in RNL.

Assumption 1. For all ρ ∈ X, the Markov chain induced by Pss′ [ρ(s)] is irreducible and

aperiodic.4

In fact, one can view such a policy as a stationary Markov strategy given state space S.

Further, define Xi = XL
i , and X9i = ×j ̸=iXj.

Expected future discounted payoffs W i(ρi, ρ9i, s0) can be defined given stationary policy

profiles [ρi, ρ9i] ∈ X:

W i(ρi, ρ9i, s0) = E
∞∑
t=0

δtui(ρ(st), st), (1)

where the expectation is taken over the randomness in the stage game payoffs and state

transitions.

3Let Ci[X,Y] be the set of functions that are i times continuously differentiable, with domain X and range
Y. When domain and range are clear, I write Ci.
4For definitions, see e.g. Appendix A in Puterman (2014)
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Then define Bi
S(ρ

9i) as the optimal policy for i given a profile ρ9i ∈ X9i, chosen from the

constraint set of stationary, S-state policies:

Bi
S(ρ

9i) = argmax
ρ∈Xi

W i(ρ, ρ9i, s0), (2)

where due to our assumption on irreducibility of the state space the optimal policy does

not depend on the initial state s0. The optimal policy is indeed optimal over all possible

history-dependend policies since given a Markov stationary opponent profile ρ9i there must

be a Markov stationary best response. In what follows, write B̄S(ρ) as the stacked best

response correspondence over i.

Definition 1. Define

(i) ES ⊂ X to be the set of Nash equilibria in policy profiles based on payoff functions

W i. In other words, ES is the set of profiles ρ∗ s.t. ρ∗ ∈ B̄S(ρ
∗).

(ii) ρ∗ ∈ ES as ’differential Nash equilibrium’ if ρ∗ is interior, first order conditions hold

for each agent at ρ∗, and the Hessian of each agent’s optimization problem at ρ∗ is

negative definite.

If ρ∗ ∈ ES is a differential Nash equilibrium, there is an open neighborhood Uρ∗ of ρ
∗ such

that best responses must be single valued for all ρ ∈ Uρ∗ . Let US =
⋃

ES
Uρ∗ . Given these

definitions of the underlying payoff environment, the following assumption is introduced:

Assumption 2 (Equilibrium existence and differentiability). hhh

(i) Given state variable S, stationary equilibrium profiles ρ∗ ∈ X exist.

(ii) There exist ρ∗ ∈ ES that are differential Nash equilibria.

A sufficient condition for both points in Assumption 2 to hold is the existence of a

differential static Nash equilibrium, given u(a, s) for all s ∈ S. As our analysis of limiting

strategies will depend on a smoothness condition of an underlying differential equation at

the given rest point, the second point will prove crucial.

Assume that each algorithm uses ACQ to update their policy:
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Definition 2. Each algorithm i updates policies ρit according to

ρit+1(s) ∈ ρit(s) + αt

[
argmax

a′∈X
Qi

t+1(s, a
′)− ρit(s) +M i

t+1

]
, (3)

where αt > 0 is a sequence of stepsizes converging to zero and M i
t+1 is an i.i.d, zero-

mean, bounded variance noise generated as a means of exploring the policy space, commonly

referred to as “parameter noise exploration”.5

Qi
t(s, a) is an estimator6 of

Qi∗(s, a, ρ9it ) = u(a, s) + δE
[
max
a′∈X

Qi∗(s′, a′, ρ9it )| a, s
]
,

the action-value Q∗-function conditional on i’s opponents playing profile ρ9it forever into

the future. This Q∗ is related to W through the equation

max
a′∈Xi

Qi∗(s, a′, ρ9i) = max
ρ∈Xi

W i(ρ, ρ9i, s).

In what follows, whenever it is clear from context, write Qi∗
t = Qi∗(s, a, ρ9it ). Note that

Qi∗
t is of interest in the reinforcement learning community as it pins down an optimal policy

in stationary environments.

This paper remains agnostic about the specificities of the value function estimation part

of the algorithms. The goal is to gain insights about what can be learned as long as the

function approximation step is reasonably well behaved, a property to be defined below.

The following assumption ensures that maximizers of Qi
t track the maximizers of the correct

function Qi∗
t well when t is large enough. The classical Q- estimator will not be enough for

this to be true, as it requires discretization of the continuous action space. However, more

involved estimation schemes exist for which Qi
t can be shown to track Qi∗

t , as shown e.g.

in Possnig (2022).

5For continuous action problems, various methods of exploration have been suggested, the version of
parameter noise introduced here being one that is adopted frequently in the literature and allows for
especially clean analytical results (see Plappert et al. (2017), and Yang et al. (2021) for a comprehensive
survey).
6Notice that Definition 2 does not exclude the case in which the function to be approximated is fully known.
The results thus include the case where agents know their value functions and follow a simple heuristic in
updating their payoffs, taking as an input the current strategies of their opponent.
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For a concrete example, consider, for some compact Θ ⊂ Rℓ, 1 ≤ ℓ < ∞:

Q ⊆
{
Q : S×X×Θ 7→ R

}
as the parametrized space of functions used to estimate Qi∗. Thus, θt ∈ Θ becomes the

parameter to estimate in order to find Qi∗
t , and we write Qt(s, a) = Q(s, a, θt). While the

more general case is treated in the online appendix, here we assume Qi∗(·, ·, ρ9it ) ∈ Q for

all ρ9it . Define the supremum distance between estimator and target as

χi
t ≡ sup

(s,a)∈S×X,

∥∥Qi
t+1(s, a)−Qi∗(s, a, ρ9it+1)

∥∥.
As ultimately we are interested in the consistency properties of maximizers of Qt, introduce

the following notation: define for any Q ∈ Q, As(Q) = argmaxa∈X Q(s, a). Let A(Q) =

[As(Q)]Ls=1. Now, let

d(A(Qt), A(Q
′
t)) = sup

(s,b)∈S×As(Qt)

inf
b′∈As(Q′

t)
∥b− b′∥,

be the worst-case distance between maximizers of Qt, Q
′
t ∈ Q. Note that d(A(Qt), A(Q

′
t)) =

0 whenever A(Qt) ⊆ A(Q′
t)). By definition, we have A(Qi∗

t ) = Bi
S(ρ

9i
t ). The algorithm’s

goal is to find a best response, so it is not necessary to find the full set of equally valuable

maximizers at each step.

Assumption 3. Assume for each i:

(i) There exists β > 1, C > 0, T > 0 such that for all t ≥ T ,

d(A(Qi
t), A(Q

i∗
t )) ≤ C

(
χi
t

) 1
β ,

(ii)

E
[
χi
t

]
= o(bβt ),

where bt → 0 satisfies limt→∞
αt

bt
= 0, αt being the stepsize in Definition 2.

(iii)

sup
t

E
[
(χi

t)
2β
]
< ∞,
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(iv) Define Ft as the σ-algebra generated from {ρt, Qt,Mt, ρt−1, Qt−1,Mt−1..., ρ0, Q0,M0}.

For all t < t′,
(
χi
t

) 1
β ,
(
χi
t′

) 1
β are uncorrelated given Ft.

In words, estimators Qi
t converge uniformly in mean to Qi∗

t , with maximizers of Qi
t

converging at a related rate. Point (i) imposes a direct relationship between the uniform

convergence of Qt, and its maximizers. In the case of parametric function spaces such as Q,

this relationship commonly holds. Here in that case, χi
t can be written in terms of distance

between estimated and “true” parameter, and upper hemicontinuity of A(Q) implies that

the upper bound in (i) is of the same order of magnitude as χi
t.
7 Point (ii) bounds the

convergence speed in mean, and point (iii) ensures that large errors have negligible mass,

which is important in the approximation results established in the next section. Point (iv)

ensures that one can bound the variance of tail-sums of χi
t, which one can think of as the

accumulated estimation error. Ft can be thought of as the information available to the

algorithmic updating rule at a given period t. Such increasing sequences of σ-algebras are

commonly employed in the analysis of stochastic difference equations such as (3).

For the stepsizes αt I maintain the following:

Assumption 4. Robbins-Monro Condition on stepsizes: αt → 0 with

∞∑
t=0

αt = ∞;
∞∑
t=0

α2
t < ∞.

This assumption takes its name from the celebrated Robbins-Monro algorithm represen-

tation (Robbins and Monro (1951)). The assumption constrains the speed of convergence

of αt, needing to balance the averaging out of errors (i.e. converge fast enough), versus

moving slowly enough to ensure sufficient exploration of the policy space.

Throughout the rest of the paper, I impose the following assumption on the iteration ρt:

Assumption 5. Iterates stay bounded almost surely:

sup
t

∥ρt∥ < ∞, a.s..

Even though commonly made, Assumption 5 is often difficult to verify. It is common

for authors to give all their results conditioning on the event that 5 holds, see for example

7More broadly, (i) is inspired by set-valued estimation results, e.g. conditions C.1 and C.2 in Chernozhukov,
Hong, and Tamer (2007), adapted to this setting of maximization under time-dependent target.
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Benäım and Faure (2012). For a more general discussion of sufficient conditions for bounded

iterates, see Borkar (2009), Chapter 2.

With Assumptions 3 and 4 in place, I will show that one can apply results from stochastic

approximation theory (see e.g. Borkar (2009)) to connect the long-run behavior of ρt to

limiting sets of solutions to an underlying differential equation.

3. Long Run Behavior: Main Results

This section presents the main results regarding characterisation of long run behavior of

the algorithms. For a set A, let cl
(
A
)
be its closure.

Definition 3. Take the algorithm from Definition 2. The limit set is defined as

LS =
⋂
t≥0

cl
(
{ρℓ |ℓ ≥ t}

)
,

the set of limits of convergent subsequences ρtk .

I write S as subscript to underline the dependence of the limiting set on the state space S.

As the characterizations introduced here will require properties of a differential equation,

I present next some useful definitions:

Definition 4. Given some ODE ρ̇ = f(ρ), let ρ∗ be a rest point of f(ρ). Let Λ =

eigv[Df(ρ∗)] the set of eigenvalues of the linearization of f at ρ∗. For a complex num-

ber z, let Re[z] ∈ R be the real part. ρ∗ is

• Hyperbolic if Re[λ] ̸= 0 holds for all λ ∈ Λ.

• Asymptotically stable if Re[λ] < 0 holds for all λ ∈ Λ.

• Linearly unstable if Re[λ] > 0 holds for at least one λ ∈ Λ.

To save notation, define for ρ ∈ X

FS(ρ) = co
(
B̄S(ρ)− ρ

)
, (4)

as the state dependent best response dynamics, where I take B̄S(ρ) to be the stacked version

of Bi
S(ρ

9i) over i, and co(·) represents the convex hull.
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Theorem 1. Let ρ∗ ∈ US be asymptotically stable for FS. Then

P[LS = {ρ∗}] > 0.

Proof Sketch of Theorem 1

The full proof for this and the following Theorems can be found in Appendix A.

Firstly, I make a connection between the recursion in (3) and the differential inclusion FS.

One can relate a time-interpolated version of the recursion ρt to solutions of the differential

inclusion

ρ̇ ∈ FS(ρ(t)),

Due to the nature of stepsizes αt and the presence of mistakes, the time-interpolation of

recursion (3) will approximate a convex hull of the best response. Since the best-response

may be multivalued, solutions to this inclusion are not guaranteed. However, assumptions

on the regularity of FS (which comes down to a linear growth condition, see Assumption

6 (i) in the Appendix) allow us to show that there is a global solution in the sense of

Filipov (1988). When considering that the updating rate αt converges to zero, one may

convince oneself that the recursion in (3) looks similar to a discrete approximation to a

time-derivative. The idea is to show that the time-interpolated version of ρt must stay

close, almost surely, to solutions of FS(ρ). Attracting points of the differential inclusion

are then natural candidates to also attract ρt.

On the other hand, learning to play unstable rest points is an issue:

Theorem 2. Let ρ∗ ∈ US be linearly unstable for FS. Then there exists an open neighbor-

hood U of ρ∗ such that

P[LS ∈ U ] = 0.

Proof Sketch of Theorem 2

ρ∗ being unstable implies that there exists an unstable manifold that ρ∗ lies on, which acts

as a repeller to the differential inclusion FS. I go on to show that due to the instability

of ρ∗ and nonvanishing variance of noise term Mt+1, no matter how close the algorithmic

process gets to ρ∗, and no matter how large t is, there is always a nonzero probability that

ρt lands on the unstable manifold and therefore must move away from ρ∗.
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Hence, asymptotically stable equilibria are equilibria that can be limiting points of the

RL learning procedure, while unstable equilibria are not. The intuition is related to how

RL learn to play: since such agents make errors due to estimation and also to explore their

action space, opponent’s strategy profiles are constantly perturbed. In other words, out of

the view of a fixed agent i, the other agents are frequently deviating to policies nearby in

the policy space. Now suppose the current profile ρt is close to an equilibrium ρ∗. Since

i’s updating rule tracks FS, their policy will only stay close to ρ∗ if the dynamics of FS

are somehow robust to deviations. This robustness is implied by asymptotic stability, and

broken by unstable equilibria.

There is a caveat here, however: Theorem 1 does not state that all limiting points in LS,g

will be equilibria of the underlying repeated game as played by rational players. Depending

on details of the stage game and state variable, one may or may not be able to rule out

the case where algorithm updates get trapped in a cycle, or other more complex behavior

not involving rest points (see Papadimitriou and Piliouras (2018)). I do not include cycles

in the above definition, however it is straightforward to extend Theorem 1 to the case of

attracting cycles as in Faure and Roth (2010), and there exist results considering linearly

unstable cycles (Benäım and Faure (2012)) that suggest one may extend Theorem 2 to such

linearly unstable cycles also.8 Notice that this observation implies that the Folk theorem

is neither necessary nor sufficient in describing the possible payoffs achieveable by learning

algorithms.

4. Learning to Collude

In this section, I exemplify the potential of my characterisation via a repeated Cournot

game played by RL algorithms falling into the family of ACQ learners. This game can be

shown to satisfy Assumptions 1 and 2. It follows that whenever an ACQ algorithm satisfies

Assumptions 3 and 4, the long run characterizations of section 3 apply.

The game is set up in line with Abreu, Pearce, and Stacchetti (1986)’s oligopoly game:

There are two agents, i ∈ {1, 2}. Actions are chosen as quantities x ∈ X = [0,M ] for

8The inclusion of an analysis of limit cycles is an interesting avenue of further research, but would be
beyond the scope of this paper.
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some large M > 0, with aggregate quantity X. I will sometimes write X ∈ X, in the

understanding that the actual space of aggregate quantites is [0, 2M ]. The price outcome

is stochastic, y ∈ Y = [0, Y ], continuously distributed conditional on X. The conditional

price density is denoted g(y;X) with full support on Y, C2 in X for almost all X. Let the

expected price conditional on X be

Y (X) =

ˆ
Y

yg(y;X)dy.

Stage game payoffs are symmetric9 for i ∈ {1, 2}:

ui(xi, x9i) = Y (X)xi − c(xi),

with c(x) a convex, twice differentiable cost function.

Due to symmetry, write u = ui whenever it is clear from context.

Definition 5. Say that the payoff function u(x1, x2) is regular if

(i) ∂
∂x1

u1(0, 0) > 0.

(ii) c(0) = 0, c′(0) > 0, c′′(x) ≥ 0 for all x ∈ X.

(iii) Y ′(2x) < 0 for all x < M .

(iv) For all x, x′ ∈ X

Y ′(x+ x′) + xY ′′(x+ x′) ≤ 0.

(v) argmaxx∈X u(x, xM) > 0, where xM = argmaxx∈X u(x, 0).

Definition 5 follows standard assumptions made in the Cournot game (e.g. Hahn (1962)).

For point (v) note that it rules out the boundary equilibrium, the unique Nash equilibrium

(xN , xN) being interior.

9Symmetry is not necessary for the results, but saves on notation.
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4.1. Binary State Variables

To start, I will derive the objects relevant for stability analysis given a general commonly

observed binary state variable S with S = {A,B}. Define for any s ∈ S, and xi ∈ X:

PsB(x1, x2) = P
[
s′ = B| s;x1, x2

]
,

the transition probability to move to state B given current state s and quantity choices xi

in state s. Also assume that

PsB(x1, x2) = P
[
s′ = B| s;x1 + x2

]
,

for all s, xi, i.e. transition probabilities only depend on aggregate quantities. I will therefore

commonly write Pss′(x1, x2) = Pss′(X) with X = x1 + x2. Let ρ
i : S 7→ X be each player’s

policy, and recalling the definition of W i in (1), note that in the binary case one can derive

W i(ρ,A) = ω−1(ρ)
[
(1− δPBB(ρ))u

i
(
ρi(A), ρ9i(A)

)
+ δPAB(ρ)u

i
(
ρi(B), ρ9i(B)

)]
,

W i(ρ,B) = ω−1(ρ)
[
δ(1− PBB(ρ))u

i
(
ρi(A), ρ9i(A)

)
+ (1− δ(1− PAB))u

i
(
ρi(B), ρ9i(B)

)]
,

(5)

where

ω(ρ) =
[
1 + δ(PAB(ρ)− PBB(ρ))

]
.

Thus, W i is a convex combination of stage game payoffs ui over the two states, with

weights being a function of transition probabilities. Notably, as δ → 1, these weights will

converge to the unique stationary distribution over states given the policy profile ρ.10

Let S0 with |S0| = 1 be the trivial state variable. FS0 then simplifies to the classical stage

game strategy based best response dynamics. Under FS0 , it is well known that for regular

u, the unique Nash equilibrium xN is globally attracting (Milgrom and Roberts (1990)).

If ACQ-learners (and many other agents) played on the trivial state space S0, they would

converge to xN with probability 1. I show next that even though that is true, a larger

10Uniqueness is implied by irreducibility (Assumption 1).
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family of binary state variables exist so that when they are used, ACQ learners will not

learn this Nash equilibrium. This inspires the following definition:

Definition 6. Say a given equilibrium x∗ of u is statically stable if it is stable under FS0.

For a given state variable S with |S| ≥ 2, say that ρ∗ with ρ∗(s) = x∗ ∀ s is dynamically

stable (under S) if it is stable under FS.

To see how a statically stable equilibrium may not be dynamically stable, focus on a

binary state variable. First, consider the incentives faced by a rational agent playing a

binary Markov strategy at the stage game Nash equilibrium, ρi(s) = xN for both i, s. I call

this policy ρN . Given regular u, note that for any twice differentiable interior transition

probabilities, the Hessian of each player’s optimization problem of maximizing (5) at ρN is

negative definite. Thus, we can derive a player’s best-response derivative at ρN .

Since the focus is on symmetric equilibria, I will drop the i- superscript for all objects,

fixing our attention on player 1’s payoffs. To further ease notation, I will adopt the following

conventions:

• us = u(ρs, ρs), for s ∈ S.

• us
k =

∂us

∂xk
and us

kk′ =
∂us

k

∂xk′
, for k, k′ = 1, 2, s ∈ S.

• P ′
sB = ∂PsB

∂x1
= ∂PsB

∂x2
for all s and analogously for P ′′

sB where the equality comes from

the fact that PsB only depends on aggregate quantities.

Letting b(ρ) be the best response to ρ, consider player 1’s best-response derivative in state

A to an incremental change in opponent’s policy in state A:

∂b(ρN)(A)

∂ρN(A)
= BR′

N +
δP ′

AB(ρN)

ωN

uN
2

uN
11

,

where b(ρN) = ρN is the best response according to long-run payoffs as derived in (5),

ωN = ω(ρN) signifies evaluation of ω(ρ) at ρN , and I use that BR′
N = −uN

12

uN
11
. The terminol-

ogy BR′
N is used since indeed, −uN

12

uN
11

is the slope of the stage-game best response function

evaluated at xN . The agent has a tradeoff between following incentives about payoffs to-

day (static incentives), represented by BR′
N , and dynamic incentives considering effects

on continuation payoffs, represented by the second term. The factor multiplying
uN
2

uN
11

can

14



be interpreted as the sensitivity of the sum of transition probabilities PAB(ρN) + PBA(ρN)

with respect to policy ρ, which I now denote as ζN .

Dynamic stability of the static Nash equilibrium is impacted by dynamic incentives in a

straightforward manner:

Proposition 1. Let u be regular and consider arbitrary transition probabilities Pss′ for a

binary state variable. Then ρN is dynamically unstable if and only if∣∣∣∣∣BR′
N + δ

P ′
AB(ρN) + P ′

BA(ρN)

ωN

uN
2

uN
11

∣∣∣∣∣ > 1.

This leads to the following corollary:

Corollary 1. Let u be regular. ρN is dynamically stable if and only if

ζN ∈ (z∗1 , z
∗
2),

where

z∗1 = −
(
1 +BR′

N

)uN
11

uN
2

; z∗2 =
(
1−BR′

N

)uN
11

uN
2

.

Note that regularity of u implies z∗1 < 0 < z∗2 , andBR′
N ∈ (−1, 0). This result111 uncovers

the channels through which the static Nash equilibrium can be destabilized, and eventually

through which algorithms in my class will learn to avoid this Nash equilibrium. Fixing

the market conditions, state variables come into play through ζN . For any payoff function

u of bounded derivatives, there is a threshold so that once ζN surpasses that threshold,

static Nash will not be learned. The set of state variables that can render a static Nash

equilibrium unstable is therefore quite large. This intuition then allows to separate two

factors that determine whether the RL will learn to play static Nash: properties of stage

game payoffs u, and properties of the state variable’s distribution.

11Note that this result holds more generally under (not necessarily unique) Nash equilibria of payoff func-
tions u unrelated to the Cournot game studied here, given twice differentiability of u at the equilibrium.
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4.2. Two Fundamental Families of Binary State Variables

Here I introduce two families of binary state variables that correlate to X through the

channel of price outcome Y . In the first case, static Nash will be dynamically stable for

an important subset of that family; in the second case, static Nash can be dynamically

unstable, and the existence of collusive equilibria that are attracting is possible, which

are best strongly symmetric equilibria of the game restricted to any discrete subset of the

action space X.

First, consider the following state variable: fix price cutoffs yA, yB ∈ Y. Then the state

variable is defined via the transition function f1R : {A,B} ×Y ×Y2 7→ {A,B} :

f1R(st−1, Yt−1, (yA, yB)) =



A if st−1 = A and Yt−1 ≤ yA

A if st−1 = B and Yt−1 ≤ yB

B if st−1 = B and Yt−1 > yB

B if st−1 = A and Yt−1 > yA.

(6)

In other words, this state recalls whether the last period’s price was low (state A) or high

(state B), where the definition of low and high can depend on the present state through

cutoffs yA, yB.

Definition 7. A public binary 1R-policy (one-recall) is defined as policy ρ : {A,B} 7→ X,

so that states evolve according to f1R, given some cutoffs (yA, yB). Refer to state variables

evolving according to f1R as 1R-state variables. Call the policy “consistent” if yA = yB.

Corollary 2. Let ρ1RN be a consistent 1R-policy that plays stage game Nash quantity xN

in every state. Then, ρ1RN is dynamically stable if and only if xN is statically stable.12

This result follows from Corollary 1, since under consistent 1R-policies, we must have

that ζN = 0 whenever yA = yB. Note that under consistent 1R-policies, PAB = 1− PBA =

12This result extends to the case of consistent 1R-policies of finitely many (> 2) price cutoffs. This follows
from an iterated application of the Sherman-Morrision formula together with the matrix determinant
lemma.
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P[Y ≤ yA]. Thus, P ′
AB(ρN) + P ′

BA(ρN)=0. In general, this comes from the fact that, for

every given current state, conditional distributions over future states are the same.

In contrast, the following is a state variable resulting from the switch of two inequalities

in the state dynamics, which I denote direction-switching (DS), under transition function

fDS:

fDS(st−1, Yt−1, (yA, yB)) =



A if st−1 = A and Yt−1 > yA

A if st−1 = B and Yt−1 ≤ yB

B if st−1 = B and Yt−1 > yB

B if st−1 = A and Yt−1 ≤ yA.

(7)

A realized price lower than the current cutoff ys represents a switch-signal, while realizing

a high price leads to no change in the state. More generally, one can define policies following

state variables with transition probabilities having the above property:

Definition 8. Say a public binary DS-policy is defined as a binary policy under a state

variable following transition function fDS for some cutoffs (yA, yB). Refer to state variables

evolving according to fDS as DS-state variables. Call it a consistent DS-policy if yA = yB.

Note that under consistentDS-policies, the probability of reaching any state s conditional

on being in A is complementary to the probability of reaching s conditional on being in B.

This fact introduces an essential difference in how states A,B are interpreted, even when

ρ(A) = ρ(B) is played.

There is a set of regular payoff functions such that ρDS
N is statically stable, but dynam-

ically unstable. Moreover, this family of regular payoff functions will also allow for the

existence of collusive equilibria.

Definition 9. Define the set of densities G so that all g(y;X) ∈ G satisfy:

(i) A monotone likelihood ratio property (MLRP):

η(y,X) ≡
∂ log

(
g(y;X)

)
∂X

(8)

is decreasing in y for all X ∈ X, and for all X ∈ int(X), η(0, X) > 0 ≥ η(Y ,X).

Define y(X) such that η(y(X), X) = 0.
17



(ii) Let g(y;X) =
´ p

0
g(y;X)dy be the c.d.f. based on g(y;X). For every X ′ ∈ int(X),

∂

∂X
G(y;X)|y=y(X′)

is quasi-concave in X ∈ X, with peak at X ′.

(iii) limX→0G2(y;X) = 0 = limX→M G2(y;X) = 0 for all y ∈ Y.

(iv)

∂ log
(
− Y ′(x+ x′)

)
∂x

<
1

x
.

MLRP ensures that lower prices are more sensitive to changes in quantities than higher

prices. Points (ii) and (iii) will allow to construct collusive equilibria from first order

conditions. Point (iv) ensures that a strict version of Definition 5 (5) can be satisfied given

this set of density functions.13. By carefully constructing g(y;X) so as to have it loose

sensitivity under large x, this can be made to hold. The numerical example in the online

appendix verifies this.

Proposition 2. For all g ∈ G there exist convex c(x) such that the resulting u is regular.

For a generic subset of G14, there exists a state variable in S∗ such that for all δ ∈ (0, 1)

large enough, ρDS
N is dynamically unstable and there exists a symmetric equilibrium σ with

0 < σA < xN < σB.

We see from the above and the following subsection that 1R-state variables and DS-state

variables lead to starkly different outcomes under reinforcement learning. In the former,

static Nash will always be learned with positive probability while in the latter, static Nash

may never be learned, while collusion can be learned with positive probability. Furthermore,

payoff functions resulting in collusive equilibria under DS-state can be such that the static

Nash equilibrium is the unique symmetric equilibrium under 1R-state variables:

Lemma 1. Suppose g ∈ G with regular u such that the conditions of Proposition 2 hold.

Then ρN is the unique symmetric equilibrium under consistent 1R-policies.

13Note that (i) implies that Y ′(x+ x′) < 0 for all x, x′ ∈ X
14A growth rate condition local to XN .
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Thus, in an economy that supports collusion under aDS-state, the choice of state variable

by firms that employ RL is all the more impactful.

Whether collusion will be learned, if it is a Nash equilibrium, still comes down to stability.

Stability depends on quantities related to growth rates of transition probabilities and the

stage game in manners analogous to the stability analysis of the static Nash equilibrium.

To see this, let Π(x1, x2) = Y (X)− c′(x1) be the marginal profit as computed by a price-

taker. Notice that by construction of the Cournot-payoff function, u1(x1, x2)−u2(x1, x2) =

Π(x1, x2), which is true for all x and therefore also true for Π′(x1, x2) ≡ ∂Π(x1,x2)
∂x1

. Note

that Π′(x1, x2) < 0 for all xi ∈ X. First, define for s, s′ ∈ S:

Rs =
δP ′

ss′

ω

Πs

Π′
s

,

where Πs = Π(ρ1(s), ρ2(s)). This quantity can be interpreted as a ratio of elasticities of ω

versus Πs with respect to symmetric ρ(s).

Lemma 2. Consider an interior, symmetric equilibrium under a binary state variable,

σ = (xA, xB) with xA < xB as constructed in Proposition 2. Then σ is asymptotically

stable if

0 ≤ min{RA, RB}, and RA +RB ≤ 1.

4.3. Relationship to the Best Equilibrium

While the characterisation in Theorem 1 holds for any finite state variable, more tractable

results were achieved above under the restriction to binary state variables. At this point it

becomes interesting to ask about the breadth of a theory under such a restriction. It turns

out that we can connect known results on the best possible payoff a rational player can

achieve in a repeated game of imperfect public monitoring (Abreu, Pearce, and Stacchetti

(1990), henceforth APS), and binary-state collusive equilibria as constructed in Proposition

2.

First, let Γ =
(
u1, u2

)
be the stage game as defined in the beginning of the section. Then

one can define Γ∞(δ) as the infinite repetition of Γ where players discount expected long

term payoffs by δ ∈ (0, 1). For any 0 < t, define bt = {Ys}0<s<t to be a public history of the
19



game, with Bt = Yt the set of possible public histories up to time t. Then let bit = {xs
i}0<s<t

be the private memory of a player’s own actions, and define Bi
t = Xt as the set of those at

period t. Now, a strategy of player i at period t can be written as map σi
t : Bt × Bi

t 7→ X.

A strategy is then a sequence σi = {σi
t}t>0, with the set of such sequences denoted Σ. In

keeping with APS, we can define strongly symmetric sequential equilibria (SSE) of Γ∞ as

profiles σ = {σ1
t , σ

2
t )}t>0 with σ1

t (bt, b
1
t ) = σ2

t (bt, b
2
t ) whenever b

1
t = b2t (i.e. strategies that

are “public”), that are individually unimprovable for each player, with respect to their

expected future discounted payoffs:

U i(σ) = (1− δ)E
∑
t>0

δtui(σt) ≥ U i(σ′, σ9i) = (1− δ)E
∑
t>0

δtui(σ′
t, σ

9i
t ),

for any σ′ ∈ Σ. APS provide a result stating that the best SSE can be supported by a

bang-bang solution, under their setting. Their setting differs from the one of this section in

that APS require finite (but arbitrarily many) actions, instead of a continuum as considered

here.

An approximation argument can be made to approximate the best SSE of Γ∞ by a

sequence of best SSEs of repeated games with a finite, increasing number of actions.

Define the restricted action set XK = {x1, ..., xK} ⊂ X such that max0<k,k′≤K{|xk −

xk′|} ≤ 1
K
, and such that xN ∈ XK for all K > 0. Let the restricted game Γ∞

K be the

repeated game where players are constrained to choose actions from Xk.

Under Γ∞
K , APS’ result applies: the payoff-maximizing SSE of Γ∞

K can be achieved by

a symmetric bang-bang profile σK ∈ X4
K , with VK defined as its value. Notice further

that under g ∈ G, MLRP gives us that σK can be implemented as a DS-policy for some

thresholds (yA, yB) ∈ Y2. This follows from the fact that optimal punishment regions of the

price space, as characterised in APS, are monotone (binary) partitions under the MLRP.

Payoffs under the “good” state can be increased when the probability of punishment state

is decreased; this can be done as long as incentives are preserved. Thus, starting from

a price threshold x ∼ 0, one can find the “punishment set” of prices in the good state

by considering all prices below x. By the MLRP, sensitivity of the conditional p.d.f. is
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maximal for the lowest prices, and decreases over prices, implying that this leads to the

most efficient choice of punishment set in terms of probability of punishment.15

Define W (σ, z) for symmetric profiles σ ∈ X4, thresholds z ∈ Y2 as long run binary state

payoffs given those thresholds, abusing notation slightly from (5). Stretching notation

slightly further, I will write W (σ, σ′, z) for profiles (σ, σ′) ∈ X4 that are not necessarily

symmetric. Define

EK(z) =
{
σ ∈ X2

K | W (σ, z) ≥ W (σ′, σ, z) ∀ σ′ ∈ X2
K

}
,

the set of symmetric equilibria under any threshold z ∈ Y2. Let E∗(z) be the correspond-

ing symmetric equilibrium set when the full continuous X is available. EK(z), E
∗(z) are

nonempty due to the inclusion of xN .

Thus, σk, VK can be alternatively characterised as solution to the problem

VK = max
σ∈EK(z)
z∈Y2

W (σ, z).

Analogously, define

V = sup
σ∈E∗(z)
z∈Y2

W (σ, z). (9)

Proposition 3. hh

(1) V ≥ lim supK→∞ VK.

(2) If all σ ∈ E∗ are strict, V = limK→∞ VK.

Define V ∗ to be the best SSE payoff among all SSE of Γ∞. We have now shown the

following:

Corollary 3. There exists an SSE σ of Γ∞ supported by a binary DS-policy under thresh-

olds z∗, such that V = W (σ, z∗). It holds that

(1) V ≤ V ∗.

(2) For any ε there exists K̄ such that for all K ≥ K̄, |V − VK | < ε.

15Note that MLRP is sufficient for the punishment regions to be pinned down by at most two thresholds.
The result in this section readly extend to the case of finitely many thresholds required to pin down
punishment and reward regions.
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Corollary 3 tells us that there exist binary state variables such that if used by algorithms,

they may learn to achieve the best DS-policy equilibrium of the continuous action game.

If Lemma 2 holds for σ, then with positive probability, the algorithms’ long run payoffs

will be arbitrarily close to the best SSE payoffs overall, of any arbitrarily fine discretization

of the action space. Hence, while it is not known whether algorithms will learn the best

symmetric public monitoring equilibrium of the underlying continuous-action game, they

may achieve payoffs arbitrarily close to the best public monitoring payoffs of arbitrarily

close-by discrete games.

5. Conclusion

This paper considers the long-run behavior of a class of RL algorithms and shows how

it can intepreted via the stability of repeated game equilibria according to an underlying

differential equation. The application of collusion in repeated games is employed to show

the usefulness of this framework: it allows one to consider comparative statics exercises on

the long-run learning behavior of RL with respect to details of the game and algorithms.

The characterization of long-run behaviors serves as a methodology that can allow re-

searches to pick a given interaction of interest, e.g. an auction, a stock market, or mul-

tilateral platform, then pick a class of algorithms, and evaluate long-run outcomes in the

chosen setting.

An important insight from my analysis is the dependence of the attractability of a given

equilibrium of the repeated game, on state variables observed by algorithms. This insight

can serve as a starting point in efforts to curb algorithmic collusion.

Finally, I show that the best symmetric binary equilibrium learnable by the algorithms

considered here will achieve payoffs arbitrarily close to the best symmetric imperfect pub-

lic monitoring equilibrium of any discretization of the action space. While this insight

doesn’t answer whether there may exist better imperfect public monitoring equilibria of

the continuous-action game, it does give some reassurance in terms of payoff-guarantees for

the algorithms studied here.
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Appendix A. Proofs

The following assumption summarizes assumptions made throughout the main text, for

ease of readability of the proofs to follow. For notational ease, write F (ρ) = FS(ρ), as for

all results to follow, state variables will be fixed.

The algorithm (3) can be written as

ρn+1 ∈ ρn + αn [F (ρn) + δn +Mn+1] , (10)

where δin = d(A(Qi
t), A(Q

i∗
t )), with δn stacked over i. We switch to an identification of time

periods by n in order to distinguish of the continuous timescale t used in the associated

continuous time systems.

Assumption 6. Let Fn be the σ-field generated by {ρn, Qn,Mn, ρn−1, Qn−1,Mn−1 . . . , ρ0, Q0,M0},

i.e. all the information available to the updating rule at a given period n.

(i) There exists c > 0 such that sup{∥y∥ : y ∈ F (ρ)} ≤ c(1 + ∥ρ∥) for all ρ ∈ X̄.

(ii) Mn+1 is a Martingale-difference noise. There is 0 < M̄ < ∞ and x > 2 such that

for all n

E[Mn+1 |Fn] = 0; E
[
∥Mn+1∥q | Fn

]
< M̄ F0 − almost surely.

(iii) There exists a continuous function

Ω : U 7→ O(X),

where O(X) is the space of positive definite matrices given vectors in X, such that

for all n

E[Mn+1M
′
n+1 |Fn] = Ω(ρn),

whenever ρn ∈ U .

(iv)

E
[
∥δn∥

]
= o(bn),

where bn → 0 satisfies limn→∞
αn

bn
= 0, αn being the stepsize in Definition 2.
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(v)

sup
n≥0

E
[
∥δn∥2

]
< ∞,

(vi) For all n′ < n′′, δn′ , δn′′ are uncorrelated conditional on Fn′.

Point (i) is an assumption on the stage game and transition probabilities: best responses

should not grow by undbounded amounts. This assumption is a sufficient condition for the

existence of Filipov solutions (Filipov (1988) to the differential inclusion ρ̇ ∈ F (ρ). Points

(ii), (iii) is are a weakening of the i.i.d. assumption made for simplicity in Definition 2.

Proof of Theorem 1

Proof. First, we prove the following result that employs known techniques from stochastic

approximation theory.

The following Definition can be found in Benäım, Hofbauer, and Sorin (2005, Section

3.3):

Definition 10. hh

(1) Given a set A ∈ X and x, y ∈ A, we write x ↪→A y if for every ε > 0 and T > 0,

there exists an integer n ∈ N, solutions x1, ..., xn to ẋ ∈ F (x)16, and real numbers

t1, ..., tn greater than T such that:

a) xi(s) ∈ A for all 0 ≤ x ≤ ti, and for all i = 1, ..., n,

b) ∥xi(ti)− xi+1(0)∥ ≤ ε for all i = 1, ..., n− 1,

c) ∥x1(0)− x∥ ≤ ε and ∥xn(tn)− y∥ ≤ ε.

(2) A set A ∈ X is said to be internally chain transitive (ICT) if A is compact and

x ↪→A y holds for all x, y ∈ A.

One can think of chains as described in this definition as a generalization to periodic

orbits of an ordinary differential equation (ODE), where solutions to the ODE are allowed

to take on arbitrarily small jumps. This generalization turns out to be very useful in the

description of long run behavior of discrete-time stochastic systems.

16Recall that G(x) is an inclusion, so uniqueness of solutions cannot be guaranteed.
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Importantly, ICT sets include rest points and limit cycles (if they exist). Consider

Papadimitriou and Piliouras (2018) for an intuitive discussion. The following result shows

why these sets are of importance in our analysis:

Proposition 4. Almost surely, LS is an ICT set of the differential inclusion

ρ̇ ∈ F (ρ(t)).

Proof. We can now show first that iteration 10 is a perturbed solution to ρ̇ ∈ F (ρ(t)) as

defined in Benäım, Hofbauer, and Sorin (2005, Definition II). The approach is to construct

a linear interpolation of (10), and show that this will shadow solutions to ρ̇ ∈ F (ρ(t))

asymptotically, for large enough n. Following the notation in Hofbauer and Sandholm

(2002), introduce:

τ0 = 0; τn =
n∑

i=1

αi; m(t) = sup{k ≥ 0 : τk ≤ t}.

Then, construct the interpolation as

X(τn + s) = ρn + s
ρn+1 − ρn

αn+1

, s ∈ [0, αn+1]. (11)

Following the proof of Hofbauer and Sandholm (2002, Proposition 1.3), we only need to

take care of the additional term δn present in iteration 10.

We will consider the accumulated δn,Mn+1 error terms. First, note that

sup

{∥∥∥∥∥
k−1∑
i=n

αi+1

(
δi+1 +Mi+2

)∥∥∥∥∥ : k = n+ 1, . . . ,m(τn + T )

}

≤ sup
n≤k≤m(τn+T )−1

∥∥∥∥∥
k∑

i=n

αi+1

(
Mi+2

)∥∥∥∥∥+ sup
n≤k≤m(τn+T )−1

∥∥∥∥∥
k∑

i=n

αi+1

(
δi+1

)∥∥∥∥∥
= Rn + sup

n≤k≤m(τn+T )−1

Ψk
n.

By Assumption 6, Rn is a standard error term in stochastic approximation theory, satis-

fying the usual assumptions of Robbins-Monro algorithms with martingale difference noise.

The sufficient conditions of Benäım, Hofbauer, and Sorin (2005) are satisfied here, so it is
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known that Rn converges almost surely to zero.17 We need to take care of the additional

term δn present in iteration 10. It suffices to show that, for all T > 0

sup
n≤k≤m(τn+T )−1

Ψk
n → 0, (12)

almost surely as n → ∞. First, note that

Ψk
n ≤ sup

n≤k≤m(τn+T )−1

∥∥∥∥∥
k∑

i=n

αi+1

(
∥δi+1∥ − E

[
∥δi+1∥ | Fi+1

])∥∥∥∥∥+
m(τn+T )−1∑

i=n

αi+1E∥δi+1∥ (13)

= R2,n +Kn, (14)

where Fi is the filtration defined in Assumption 6. Now, by Assumption 6 (vi) and square

integrability of ∥δn∥, R2,n is the supremum on another martingale difference noise term

with bounded variance, just as Rn. Thus, again for R2,n we have almost sure convergence

to zero. As for Kn, recall from Assumption 6 (iv) that E∥δn∥ = o(bn). Hence, there exists

some CK > 0 such that for all n large enough,

m(τn+T )−1∑
i=n

αi+1E∥δi+1∥ ≤ CK

m(τn+T )−1∑
i=n

αi+1bi+1 ≤
m(τn+T )−1∑

i=n

α2
i+1,

by assumption that limn→∞
αn

bn
= 0. Thus, by square summability of αi, the sum above

must converge to zero in n, and therefore Kn → 0 as well, and the result (12) follows.

Thus, ρn is almost surely a perturbed solution to ρ̇ ∈ Fg(ρ(t)) . The result then follows

from Hofbauer and Sandholm (2002, Theorem 3.6), which states that the set of convergent

subsequences of any perturbed solution to Fg is an ICT set of Fg. □

Next, to prove convergence to an attractor {ρ∗} with positive probability, a stronger

result than Proposition 4 is first needed:

Assumption 7 (Condition 11, Faure and Roth (2010)). There exists a map ω : R3
+ 7→ R+

such that

(1) For any ε > 0, T > 0,

P

(
sup
m′≥n

sup
m′≤k≤m(τm′+T )

∥∥∥∥∥
k−1∑
i=n

αi+1

(
δi+1 +Mi+2

)∥∥∥∥∥ > ε

∣∣∣∣∣ Fn

)
≤ ω(n, ε, T ),

17See e.g. Faure and Roth (2010, Proposition 2.16).
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almost surely in F0.

(2) limn→∞ ω(n, ε, T ) = 0.

Faure and Roth (2010, Proposition 2.16) states that Condition 11 above is satisfied for

our Mn+1 martingale difference sequence (i.e. if δn = 0 for all n). I show next that this

result extends to our case:

Lemma 3. Condition 11 is satisfied under Assumption 6.

Proof. Note first that ∥∥∥∥∥
k−1∑
i=n

αi+1

(
δi+1 +Mi+2

)∥∥∥∥∥
≤

∥∥∥∥∥
k−1∑
i=n

αi+1

(
Mi+2

)∥∥∥∥∥+
∥∥∥∥∥

k−1∑
i=n

αi+1

(
δi+1

)∥∥∥∥∥
= Rn +Ψk

n,

similarly as stated in the proof above. For Rn, Faure and Roth (2010, Proposition 2.16)

immediately applies, as it only requires the Robbins-Monro condition on αn, and that As-

sumption 6 is satisfied for Mn. For Ψ
k
n, recall (13) from the previous proof. As noted there,

R2,n is another bounded martingale-difference noise, so Faure and Roth (2010, Proposition

2.16) applies as well. Finally, Kn is a determinstic sequence converging to zero as shown

in the previous proof, so that the probability of the term being larger than any fixed ε > 0

is always zero for large enough n. The result follows. □

Finally, Faure and Roth (2010, Theorem 2.15) states that if Assumption 7 is satisfied,

P[LS = {ρ∗}] > 0 holds as long as {ρ∗} is attainable by the process ρn:

Definition 11. A point p is attainable if, for any n > 0 and any neighborhood U of p

P[∃s ≥ n : ρs ∈ U ] > 0.

Let Att(X) be the set of attainable points for algorithm (10). Then we need that the

basin of attraction of an attractor has nonempty intersection with Att(X). This can be

verified:
27



Lemma 4. Let B be a basin of attraction of an attractor A for F (ρ). Suppose ρn ∈ X \B.

Then there exists s > n such that ρs ∈ B with positive probability.

Proof. Since n is finite, to show existence we construct s = n+ 1: For any z ∈ B, one can

pin down the necessary shock Mz to reach it:

Mz ∈
z − ρn
αn

− F (ρt),

since F might be multivalued.

By finiteness of Mz, Mz is in the support of Mn+1 for every n. For any ball Bz around

z, define

Mz = {Mx′ : x′ ∈ Bz}.

Mz must have positive measure for all finite n, since it is in the support of Mn+1. (if

we allow s > n + 1, we may be able to increase the measure, but we only need it to be

positive.) □

Thus, Faure and Roth (2010, Theorem 2.15) applies, concluding this proof. □

Proof of Theorem 2]

Proof. We can apply Benäım and Faure (2012, Theorem 3.12) to prove P[LS = {ρ∗}] = 0

in the following. The conditions and analysis sufficient for the proof of Benäım and Faure

(2012, Theorem 3.12) are local with respect to ρ∗. Thus, the fact that F is globally

potentially multivalued is of no importance, since in a small enough neighborhood around

ρ∗ it must be single-valued and C1 (see Definition 1).

Benäım and Faure’s result is concerned with time-interpolations of stochastic differential

inclusions F (ρ) satisfying Assumption 6 (i), such as (11). Their Theorem 3.12 states, trans-

lated in terms of this paper, that under an Assumption the authors refer to as Hypothesis

2.2, and Assumption 6 (ii), (iii), the result to be proved here holds true.

In fact, Benäım and Faure (2012, Hypothesis 2.2) is equivalent18 to Assumption 7, which

was shown to hold for our algorithm in Lemma 3. Thus, the result applies, concluding the

proof. □

18See Faure and Roth (2010, Remark 2.14)
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Proof of Proposition 1

Proof. First, note the following fact about block symmetric matrices.

Remark 1. Suppose A,B are square matrices of the same dimension. Let

T =

A B

B A

 .

Then one can show

det(T ) = det(A−B)det(A+B).

Given a square matrix A, define Λ as the set of eigenvalues of the A. Then define

κ(A) = max{|λ| : λ ∈ Λ},

as the spectral radius of A.

Lemma 5. Suppose α∗ = β∗ = σ∗ is an interior, symmetric equilibrium. Let κ̄ be the real

part of the spectral radius of J(σ∗), the matrix of best response derivatives of a given player

(by symmetry, the identity is irrelevant). Then σ∗ is asymptotically stable if κ̄ < 1, and

unstable if κ̄ > 1.

Proof. Using Remark 1, we get that

ch(λ) = det(J(σ∗)− (1 + λ)I2)det(J(σ
∗) + (1 + λ)I2).

Thus, if µ is an eigenvalue of J(σ∗), then ±|µ − 1| is an eigenvalue of X(σ∗), and the

conclusion follows, since asymptotic stability requires that all eigenvalues of X(σ∗) have

negative real parts. □

Hence, it is enough to characterize the eigenvalues λ1,2 of the matrix of best-response

derivatives of player 1 at symmetric Nash policies ρN :

JN =

BR′
N +

δP ′
AB(ρN )

ωN

uN
2

uN
11

− δP ′
AB(ρN )

ωN

uN
2

uN
11

− δP ′
BA(ρN )

ωN

uN
2

uN
11

BR′
N +

δP ′
BA(ρN )

ωN

uN
2

uN
11

 .
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We have that

λ1,2 =
tr(JN)

2
±
√

tr(JN)2

4
− det(JN),

where tr(·), det(·) represent trace and determinant. Thus, λ1 = BR′
N , and λ2 = BR′

N +

δ
P ′
AB(ρN )+P ′

BA(ρN )

ωN

uN
2

uN
11
. Regularity gives that |λ1| < 1, so that |λ2| > 1 appears as the

condition in the Proposition. □

Proof of Proposition 2]

Proof. First, we prove that given G, u can be regular:

Lemma 6. Suppose g ∈ G. Then there exist a convex cost function c(x) such that the

resulting stage game payoffs u(x1, x2) are regular.

Proof. By definition of G, we only need to construct the cost function c(x) to satisfy Defini-

tion 5 points (ii), (v) . Fix some g ∈ G. Now, pick a cost function satisfying (i), (ii). Note

that for xM as defined in Definition 5 (v), it must be that Y (xM) > 0. (See (i)). Thus,

as long as c′(0) < Y (xM), we can guarantee that (v) holds. Finally, G satisfies Definition

5 (iii), (iv) by Definition 9 (iv), so that there must be a unique interior Nash equilibrium

(xN , xN), which is symmetric. □

Recall the following conventions:

• us = u(ρs, ρs), for s ∈ S.

• us
k =

∂us

∂xk
and us

kk′ =
∂us

k

∂xk′
, for k, k′ = 1, 2, s ∈ S.

• P ′
sB = ∂PsB

∂x1
= ∂PsB

∂x2
for all s and analogously for P ′′

sB where the equality comes from

the fact that PsB only depends on aggregate quantities.

• G2(y;X) ≡ ∂
∂X

g(y;X).

For everyX ∈ int(X), define y(X) such that η(y(X), X) = 0, which exists by Definition 9

(i). Pick y∗ = y(XN) as a price cutoff, for XN = 2xN , given interior static Nash equilibrium

xN . Let (y
∗, y∗) be the symmetric cutoff for a binary state variable following fDS transitions.

Thus, we construct a consistent DS-state variable with PAB(X) = PBA(X) = Pr[p ≤ y∗ |

X] = G(y∗;X), and fix this state variable throughout the remainder of the proof. Also,

define h(X) = Pss′(X) for s ̸= s′ ∈ S, to save notation. We now prove a helpful Lemma.
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Lemma 7. hh

(1) There exists M∗ ≤ M such that for all x̂ ∈ [0,M∗] there exists a unique x∗(x̂) ∈

[0,M∗] such that

u1(x
∗(x̂), x̂) = 0.

(2) For all x ∈ (0, xN ] there exists a unique x̂ ∈ [xN ,M) such that

u1(x, x)

h′(2x)
+

u1(x̂, x̂)

h′(2x̂)
= 0.

(3) For all x, x̂ ∈ (0,M)

u1(q, x̂)

h′(x+ x̂)
− u1(x̂, x̂)

h′(2x̂)
= 0

has a unique solution at x = x̂ .

Proof. For the first claim, notice that Definition 9 (iv) implies that u12(x, x
′) < 0 for all

x, x′ ∈ X, and therefore best responses must be strictly decreasing whenever positive. Thus,

there exists M∗ ≤ M (choose M large enough) so that u1(0,M
∗) = 0, and x = 0 is the

best response to x′ ≥ M∗.

For the second claim, note that convexity of c and u12(x, x
′) < 0 implies that u1(x, x)

is strictly decreasing for all x ∈ X, crossing 0 at xN . By construction of y∗, note that by

Definition 9 (ii), G2(y
∗;X) > 0 for all X ∈ int(X), with peak at XN . Thus, the fraction

u1(x,x)
h′(2x)

∈ (−∞,∞) is strictly decreasing over x ∈ X, and the claim follows.

For the third claim, consider two cases:

Case 1: x̂ ≤ xN .

Notice that x̂ < xN implies u1(x̂, x̂) > 0, and as shown for the first claim, u1(x, x̂) is

monotone decreasing on the candidate solutions x ∈ [0, x∗(x̂)]. Larger x are not candidates,

due to the sign change of u1. In the following I will write x∗ = x∗(x̂) for brevity. Define

x = xN − x̂. Note that case 1 implies x∗ ≥ xN , which in turn implies

Y (x∗ + x̂) + Y ′(x∗ + x̂)x∗ ≥ Y (XN) + Y ′(XN)x,
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by Definition 9 (iv), and since x ≤ xN in this case. Thus, x∗ ≤ x, which implies that for

all x ∈ [0, x∗], h′(x+ x̂) is increasing. Thus, u1(q,x̂)
h′(x+x̂)

is strictly decreasing on x ∈ (0, x∗(x̂)).

By monotonicity there can only be one solution, x = x̂.

Case 2: x̂ ∈ (xN ,M ].

Here, note that u1(x̂, x̂) < 0, and so all candidate solutions x must satisfy x ∈ (x∗,M ]. For

x̂ ≤ XN we get analogously to above, that now x ≤ x∗. This implies h′(x+ x̂) is decreasing

on the set of candidate solutions, and again we arrive at strict monotonicity of u1(q,x̂)
h′(x+x̂)

.

For x̂ > XN , we have immediately that h′(x + x̂) is decreasing for all x ∈ X, and the

result follows. □

Now we need the following observations based on the definition of W in (1):

W1 = ω−1(1− δPBB)
[
ω−1δP ′

AB(u
B − uA) + uA

1

]
,

W2 = ω−1(δPAB)
[
ω−1δP ′

BB(u
B − uA) + uB

1

]
,

W11 = −2ω−1δP ′
ABW1 + ω−1(1− δPBB)

[
ω−1δP ′′

AB(u
B − uA) + uA

11

]
,

W22 = 2ω−1δP ′
BBW2 + ω−1(δPAB)

[
ω−1δP ′′

BB(u
B − uA) + uB

11

]
,

W12 = ω−1δ
[
P ′
AB

1− δPBB

δPAB

W2 − P ′
BB

δPAB

1− δPBB

W1

]
, (15)

Then, an optimal, non-degenerate, interior strategy α∗ must satisfy

W1(α
∗, β) = 0 ⇐⇒ ω−1δP ′

AB(u
B − uA) + uA

1 = 0,

W2(α
∗, β) = 0 ⇐⇒ ω−1δP ′

BB(u
B − uA) + uB

1 = 0,

W11(α
∗, β) < 0 ⇐⇒ ω−1δP ′′

AB(u
B − uA) + uA

11 < 0,

W22(α
∗, β) < 0 ⇐⇒ ω−1δP ′′

BB(u
B − uA) + uB

11 < 0.

Notice that for all such α∗, we also have W12(α
∗, β) = 0. This follows under irreducibility,

since then initial states do not affect the optimal policy choice.

Now for the proof of the Proposition:
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Firstly, note that finding interior σ such that W1(σ) = W2(σ) = 0 is equivalent to finding

σ such that

W1(σ) = 0;
uA
1

h′(XA)
+

uB
1

h′(XB)
= 0.

From now on, to save notation, I write hs to denote evaluation of h() at xs, s ∈ {A,B,N}.

By Lemma 7 we have that for any xA ∈ (0, xN ] there exists a unique xB ∈ [xN ,M) such

that

uA
1

h′
A

+
uB
1

h′
B

= 0.

We will call such xB = z(xA). By strict monotonicity we can apply the implicit function

theorem to get

z′(xA) = −h′
B

h′
A

uA
11 + uA

12 − 2h′′
A

uA
1

h′
A

uB
11 + uB

12 + 2h′′
B

uB
1

h′
B

. (16)

It is then not surprising that at xN , z
′(xN) = −1. Now define Ψ(xA) = W1(xA, z(xA), xA, z(xA))

as the first order condition of W with respect to xA, substituting in z(xA) so that at every

xA,

W2(xA, z(xA), xA, z(xA)) = W1(xA, z(xA), xA, z(xA)) must hold. Thus, any zero of Ψ(xA)

must set both first order conditions to zero.

Since ρDS
N is always a solution, we have that Ψ(xN) = 0, i.e. one zero always exists.

We will now show that for small x, Ψ(x) > 0 holds, while for large x, Ψ(x) < 0. The

sufficient condition stated in this Proposition is then the condition ensuring Ψ′(xN) > 0,

which ensures that there must be another zero with xA < xN .

Firstly, recall that by regularity of u, for x > 0 small enough, u1(x, x) > 0 must hold.

Now consider Ψ(xA):

Ψ(xA) > 0 ⇔ ω−1δh′(2xA)(u
B − uA) + uA

1 > 0.

Then since h′(0) = 0 we get that the first term must be dominated by the second term for

xA > 0 small enough, which is positive.
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Next, and analogously, take xA ∈ (xN ,M) to be large. In that case, we let y(xA) =

z−1(xA) < xN be the inverse solution that equalizes first order conditions. Then if xA < M

large enough, we get that the first term must be dominated by the second term since

h′(M) = 0, and the second term is negative by definition of D < M . Finally to prove that

Ψ′(xN) > 0, note that

Ψ′(xN) = WN
11 +WN

13 +WN
14z

′(xN) = WN
11 +WN

13 −WN
14

= ω−1(1− δ(1− hN))
[
uN
11 + uN

12 − ω−1δh′
Nu

N
2 + ω−1δh′

Nu
N
2 z

′(xN)
]

= ω−1(1− δ(1− hN))
[
uN
11 + uN

12 − 2ω−1δh′
Nu

N
2

]
= ω−1(1− δ(1− hN))u

N
11

[
1 +

uN
12 − 2ω−1δh′

Nu
N
2

uN
11

]
.

Since uN
11 < 0, we have Ψ′(xN) > 0 if

1 +
uN
12 − 2ω−1δh′

Nu
N
2

uN
11

< 0

⇔ 2ω−1δh′
Nu

N
2 − uN

12 < uN
11

⇔ 2δh′
Nu

N
2 − ωuN

12 < ωuN
11

⇔ 2δh′
Nu

N
2 − 2δhNu

N
12 < 2δhNu

N
11 + (1− δ)(uN

12 + uN
11).

Thus we can write

1 +
uN
12 − 2ω−1δh′

Nu
N
2

uN
11

< 0

⇔ h′
N

hN

Y ′
NxN < 3Y ′

N + 2Y ′′
NxN − c′′N +R

⇔ −h′
N

hN

<
c′′N − 2Y ′′

NxN

Y ′
N

1

xN

− 3

xN

+R,

where for the last line, we used that uN
1 = 0 ⇒ Y ′

NxN = c′N − YN < 0, and where

R = 1−δ
2δ

(uN
12 + uN

11) vanishes as δ → 1. Now we need to show that this inequality can be

satisfied for some g ∈ G.

Lemma 8. For any g ∈ G there exists g̃ differing from g only on a neighborhood of (y∗, XN),

so that under this g̃, Ψ′(xN) > 0 holds.
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Proof. Assume we start from g(y;X) such that the condition fails:

h′
N

hN

< −c′′N − 2Y ′′
NxN

Y ′
N

1

xN

+
3

xN

.

We will perturb g(y;X) so as to flip the inequality in our benefit. To this end, we will

use that the left hand side depends directly on the c.d.f. evaluated at a point y∗, while the

right hand side depends only on an integral over all p ∈ Y of the c.d.f.. Note that

h′(X) =

ˆ y∗

0

g2(y;X)dp.

For a small neighborhood N1 of y∗, let µ = ℓ(N1) be the Lebesgue-measure, and let µC

be the Lebesgue-measure of [supN1, Y ]. Define, for ∆ > 0,

g̃2(y;X) = g2(y;X) + ∆1{p ∈ N1, Q ∈ N2} −∆
µ

µC

1{p ≥ supN1, Q ∈ N2}, (17)

where N2 is a small neighborhood of XN . Say that the perturbation is feasible if g̃ remains

a density:

g̃(y;X) > 0 ∀ p ∈ Y;

ˆ
Y

g̃2(y;X)dp = 0.

I will show that this perturbation is feasible for N1 small enough relative to ∆, ensuring

that g̃(y;X) > 0 remains true; the construction (17) ensures that g̃2 integrates to zero.

Define [y, y] = N1, [X,X] = N2. It follows that

G̃2(y
∗, XN) = G2(y

∗, XN) + ∆(y∗ − y),

and

G̃(y∗, XN) = G(y∗, XN) + ∆(y∗ − y)(XN −X).

Let µ1 = (y∗ − y), µ2 = (XN −X), we can write

h̃′
N

h̃N

=
h′
N +∆µ1

hN +∆µ1µ2

.
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Now for the expected price:

ỸN = Y −
ˆ
Y

G̃(p;XN)dp

= YN −
ˆ
N1

∆(p− y)µ2dp

= YN −∆µ2

(1
2
(y2 − y2)− y(y − y)

)
= YN − 1

2
∆µ2µ

2,

where the first equality is due to integration by parts. Then,

Ỹ ′
N = −

ˆ
Y

G̃2(p;XN)dp

= Y ′
N − 1

2
∆µ2,

and Ỹ ′′
N = Y ′′

N for all Q ̸= X,X. We get that

h′
N +∆µ1

hN +∆µ1µ2

< −c′′N − 2Y ′′
NxN

Ỹ ′
N

1

xN

+
3

xN

⇔ h′
N +∆µ1

hN +∆µ1µ2

< −c′′N − 2Y ′′
NxN

Y ′
N − 1

2
∆µ2

1

xN

+
3

xN

.

If we choose ∆ increasing, µ1, µ2 decreasing so that ∆µ1 increases, while keeping ∆µ2

and ∆µ1µ2 constant, this inequality can be flipped. However, we need to ensure that in so

doing, g̃ remains positive. Note

g̃(y;X) = g(y;X) + ∆(X −X)1{p ∈ N1, X ∈ N2} −∆
µ

µC

(X −X)1{p ≥ y,X ∈ N2},

and thus, for all Q ∈ N2, the decrease in g̃(y;X) can be controlled via ∆µ2 and ∆µµ2.

We can always find three sequences ∆j, µ1,j, µ2,j > 0 for all j such that ∆jµ1,j increases,

∆jµ
2
1,j decreases, ∆jµ2,j is weakly increasing, and ∆jµ1,jµ2,j decreases.

19

By choosing these sequences as above, it follows that
h̃′
N

h̃N
increases, while keeping the

right hand side above constant, and also keeping g̃(y;X) > 0 for all p,X. We have arrived

at a g̃(y;X) ∈ G under which Ψ′(xN) > 0. □

19E.g., for some c1, c2, c3 > 0, let ∆j = cjj, µ1,j = c2j
−b, µ2,j = c3j

−b, where b ∈ ( 12 , 1). Note also that

N1 can be chosen so that µ = 1
2µ1,j for all j, preserving the same order of magnitude.
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Now, Ψ′(xN) > 0 together with Ψ(x) > 0 for x small, Ψ(x) < 0 for x large, allows us to

use the intermediate value theorem. It follows that there exists xA < xN < xB such that

W1(σ) = W2(σ) = 0 for σ = (xA, xB, xA, xB).

We are left to show that this zero is a global maximizer. Firstly, we note that the Hessian

at σ must be negative definite: we see from (15) that W12 = 0, so the Hessian must be

diagonal at σ. A sufficient condition for negative definiteness then is h′′
A > 0 > h′′

B and

uA > uB. The first one follows given Definition 9 (ii) and since xA < xN < xB, the second

one follows from the first order conditions:

W1 = 0 ⇒ uA − uB = ω
uA
1

δh′(XA)
> 0.

Now we have that σ is a local max, and we can consider one-shot deviations to show that

it is global. In state A, we need to show that

(1− δ)u(xA, xA)+δ
[
WA + hA

(
WB −WA

)]
≥ (1− δ)u(x, xA) + δ

[
WA + h(x+ xA)

(
WB −WA

)]
,

holds for all x ∈ X, where we take the shorthand W S to indicate the value function at state

s evaluated at the policy (xA, xB). Equivalently, we can show that x = xA is the unique

solution to the first order condition of this problem with respect to x, and that boundary

conditions are satisfied so that the maximizer can only be interior. Taking derivatives, we

get

HA(x, xA) = (1− δ)u1(x, xA) + δh′(x+ xA)
(
WB −WA

)
.

By construction, HA(xA, xA) = 0.

Since the Hessian is negative definite at xA, xA, H
A
1 (xA, xA) =

∂HA(x,xA)
∂x

∣∣∣
q=xA

< 0. Recall

that in the proof of Lemma 7 we showed that xA is the only solution to HA(x, xA) = 0,

but also that u1(x,xA)
h′(x+xA)

is strictly decreasing over x ∈ [0, x∗(xA)]. Thus, HA(0, xA) > 0 and

HA(M/2, xA) < 0 must hold and xA is globally optimal.

Now, in state B we do the analogous argument, take derivatives to get

HB(x, xB) = (1− δ)u1(x, xB)− δh′(x+ xB)
(
WB −WA

)
.
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Where again by the negative definite Hessian, we have HB
1 (x, xB) < 0. Then in the proof

of Lemma 7 we show that u1(x,xA)
h′(x+xA)

is strictly decreasing over x ∈ [x∗(xB),M/2]. The result

follows as above: xB is globally optimal.

We have shown that playing σ = (xA, xB) is the unique best reply to an opponent playing

σ, and thus σ is a symmetric equilibrium as required. □

Proof of Lemma 1

Proof. First, since we are restricting to symmetric equilibria, it is sufficient to consider two

cases: uA ≶ uB. Since we consider consistent 1R policies, let the unique threshold be x.

i) uA > uB.

Recall that state A corresponds to observing a price below x. As laid out in the proof

of Proposition 2, we can write an agent’s FOC for the problem of best responding in the

following way:

W1 = 0 ⇔ δh′(XA)

ω

(
uA − uB

)
+ uA

1 = 0;

W2 = 0 ⇔ δh′(XB)

ω

(
uA − uB

)
+ uB

1 = 0,

where we plug in the fact that PAB(X) = 1 − h(X) = Pr[p > x]. For both equations,

the leading term is strictly positive, since h′(X) > 0 for all interior X (recall Definition 9

(iii), (iv)). It follows that us
1 < 0 must hold for both s.

In the proof of Lemma 7 I show that we have that u1(x,x)
h′(2x)

is strictly decreasing for all

x ∈ [0,M ]. At the same time, u(x, x) is strictly decreasing for all x, which is necessary

for u1(x, x) < 0. Thus, for case (i) it must be that xA > xB, but since u1(x,x)
h′(2x)

is strictly

decreasing, there exists no such pair xA, xB to set W1 = W2. It follows that no such pair

can be an equilibrium.

The case uA < uB follows from an analogous argument. □
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Proof of Lemma 2]

Proof. To save notation, write J∗ = J(σ, σ), where J is the matrix of best-response deriva-

tives of player 1 at symmetric policies σ.

This definition allows one to write, for any interior equilibrium profile σ as constructed

in Proposition 2,

∂ρ∗1A
∂ρ2A

= −1 + ϕ−1
A

[
Π′

A − ω−1δP ′
ABΠA

]
,

∂ρ∗1A
∂ρ2B

= ϕ−1
A ω−1δP ′

ABΠB,

∂ρ∗1B
∂ρ2A

= ϕ−1
B ω−1δP ′

BAΠA,

∂ρ∗1B
∂ρ2B

= −1 + ϕ−1
B

[
Π′

B − ω−1δP ′
BAΠB

]
, (18)

where ρ∗1 indicates 1’s best-response policy, s-subscripts denote evaluation at xs, and

ϕA = ω−1δP ′′
AB(u

B − uA) + uA
11;

ϕB = ω−1δP ′′
BB(u

B − uA) + uB
11,

Some tedious algebra then allows re-writing determinant and trace of J(σ, σ) using (18),

Then:

tr
(
J∗) = −2 +

Π′
A

ϕA

[
1−RA

]
+

Π′
B

ϕB

[
1−RB

]
;

det
(
J∗) = [1− Π′

A

ϕA

Π′
B

ϕB

]
− Π′

A

ϕA

[
1−RA

][
1− Π′

B

ϕB

]
− Π′

B

ϕB

[
1−RB

][
1− Π′

A

ϕA

]
. (19)

Notice that for the stage game as constructed in Proposition 2, ϕs < us
11 holds, and therefore

Π′
s

ϕs
∈ (0, 1) can be guaranteed as long as us

12 ≤ 0, since Π′
s = us

11−us
12. Sign and magnitude of

Rs depend on local conditions of both transition probabilities and the stage game quantity

Π(x1, x2). It is clear from (19) that both trace and determinant depend crucially on the

quantities Rs. Indeed, if RA, RB are not too negative, stability of σ follows:
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Firstly, by Lemma 5, stability of σ is equivalent to∣∣tr(J∗)∣∣− det
(
J∗) < 1. (20)

Then, note from (19) that by the condition of the Proposition,

tr
(
J∗) < −RA −RB

and so for RA, RB not too negative, we must have that tr
(
J∗) ≤ 0. Next note that we can

write

det
(
J∗) = −tr

(
J∗)− 1 +

Π′
A

ϕA

Π′
B

ϕB

[
1−RA −RB

]
.

Thus, for RA, RB bigger than 0, the trace drops out in the condition in (20). The last

equation then determines stability through the term
[
1−RA −RB

]
. □

Proof of Proposition 3]

Proof. For any discretization XK , define WK(σ, z) : X2 × Y2 7→ R as restriction of the

payoff function to XK :

WK(σ, z) = W (fK(σ), z),

where

fK(σ) = arg min
σ′∈X2

K

∥∥σ − σ′∥∥,
for any norm on X2, the projection of σ onto discrete space XK .

For every sequence XK there is an associated sequence αK with

αK = max
(σ,z)∈X2×Y2

∥∥WK(σ, z)−W (σ, z)
∥∥.

Continuity of W implies that αK → 0. Write αK(XK) for a sequence given a fixed

sequence of discretizations. Say that a discretization sequenceXK is covering if αK(XK) →

0 (and xN ∈ XK). From now on, fix some z ∈ Y2, and a covering sequence of discretizations

XK .
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Notice that EK(z) is closed-valued, trivially by finiteness of XK . Furthermore, E∗(z) is

closed-valued: W is continuous, X compact, and thus Berge gives us that the best-response

correspondence is closed and compact-valued. Then, applying the closed-graph theorem

gives us that the equilibrium set E∗(z), as a set of fixed points of a closed and compact

correspondence, must be closed. To get to claim (1), I will show that any converging

sequence σK ∈ EK(z) has its limit in E∗. In other words, an upper hemicontinuity property

holds for the equilibriunm correspondence along sequences of covering discretizations.

Lemma 9. For all sequences {σK} with σK ∈ EK(z),

αK → 0, σK → σ̄ ⇒ σ̄ ∈ E∗(z).

Proof. Suppose not. Then there exists a subsequence σKt ∈ EKt(z) with σKt →t σ̄ /∈ E∗(z).

The converging subsequence exists since X2 is compact. To ease notation, re-define k = kt

for the rest of the proof. Not being an equilibrium, we have that there exists σz ̸= σ̄ that

maximizes the deviation payoff

∆z = W (σz, σ̄, z)−W (σ̄, σ̄, z) > 0.

Pick ε ∈ (0,∆). By convergence of σK , and by continuity of W , we have that there

exists K1,z such that for all K ≥ K1,z,∣∣∣W (σz, σK , z)−W (σz, σ̄, z)
∣∣∣ ≤ ε

3
. (21)

By the same argument, there is a K2,z s.t. for all K ≥ K2,z,∣∣∣W (σK , σK , z)−W (σ̄, σ̄, z)
∣∣∣ ≤ ε

3
. (22)

Furthermore, we can always choose K̄z ≥ max{K1,z, K2,z} large enough so that αK ≤ ε
3
,

implying ∣∣∣W (fK(σz), σK , z)−W (σz, σK , z)
∣∣∣ ≤ ε

3
. (23)

Take K ≥ K̄z. Define the best deviation under the discrete game as

σ̂K = arg max
σ∈X2

K\σK

W (σ, σK , z).
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Now we have

W (σ̂K , σK , z)−W (σK , σK , z) ≥ W (fK(σz), σK , z)−W (σK , σK , z)

= W (σz, σK , z)−W (σK , σK , z) + β1,K

= W (σz, σ̄, z)−W (σ̄, σ̄, z) + β1,K + β2,K + β3,K

≥ ∆+ β1,K + β2,K + β3,K ,

where β1,K corresponds to the projection error (23), and β2,K , β3,K correspond to (21),(22)

respectively. We have that |βi,K | ≤ ε
3
, and thus

W (σ̂K , σK , z)−W (σK , σK , z) ≥ ∆− ε > 0,

implying that σK /∈ EK , a contradiction. □

To finish the proof, note that Lemma 9 implies that for any feasible αK , limK→∞ Fz(αK) ⊆

E∗(z), with E∗(z) being the continuous-action version of the equilibrium set for fixed z.

We get that

lim sup
K→∞

VK(z) ≤ Vz,

with VK(z), Vz being the maximal payoff over the equilibrium sets EK(z), E
∗(z). The in-

equality holds for every z, and therefore also holds when taking maximum over z on both

sides, and claim 1 is proven.

For claim 2, the claim to prove is that when all equilibria in E∗ are strict, lower hemicon-

tinuity property holds for the sequence of equilibrium correspondences EK(z). Fix z, then

the proof is via contradiction: there exists some strict equilibrium σ ∈ E∗(z) that is not

approximated by any sequence of equilibria in EK(z). The proof can be done analogously

to the one above; defining ∆z > 0 as the best deviation payoff:

∆z = W (σ, σ, z)−max
X2\σ

W (σz, σ, z) > 0.

Since ∆z > 0, we can find large enough discretizations s.t. σ can be approximated

arbitrarily closely, in which case incentives must also align, by continuity of W . The
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contradiction follows. Hence, together with Lemma 9, we get that

lim
K→∞

sup
σK∈F (αK)

z∈Y2

W (σK , z) = sup
σ∗∈F (0)
z∈Y2

W (σ∗, z) = supV.

□
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sion with imperfect monitoring”. In: International journal of industrial organization 79,

p. 102712.

Chernozhukov, Victor, Han Hong, and Elie Tamer (2007). “Estimation and confidence

regions for parameter sets in econometric models 1”. In: Econometrica 75.5, pp. 1243–

1284.

Faure, Mathieu and Gregory Roth (2010). “Stochastic approximations of set-valued dynam-

ical systems: Convergence with positive probability to an attractor”. In: Mathematics of

Operations Research 35.3, pp. 624–640.

Filipov, Aleksei Fedorovich (1988). “Differential equations with discontinuous right-hand

side”. In: Amer. Math. Soc, pp. 191–231.

Fudenberg, Drew and David M Kreps (1993). “Learning mixed equilibria”. In: Games and

economic behavior 5.3, pp. 320–367.

Fudenberg, Drew and David K Levine (2009). “Learning and equilibrium”. In: Annu. Rev.

Econ. 1.1, pp. 385–420.

Gaunersdorfer, Andrea and Josef Hofbauer (1995). “Fictitious play, Shapley polygons, and

the replicator equation”. In: Games and Economic Behavior 11.2, pp. 279–303.

Hahn, Frank H (1962). “The stability of the Cournot oligopoly solution”. In: The Review

of Economic Studies 29.4, pp. 329–331.

Hart, Sergiu and Andreu Mas-Colell (2003). “Uncoupled dynamics do not lead to Nash

equilibrium”. In: American Economic Review 93.5, pp. 1830–1836.

Hofbauer, Josef and William H Sandholm (2002). “On the global convergence of stochastic

fictitious play”. In: Econometrica 70.6, pp. 2265–2294.

Johnson, Justin, Andrew Rhodes, and Matthijs R Wildenbeest (2020). “Platform design

when sellers use pricing algorithms”. In: Available at SSRN 3753903.

Klein, Timo (2021). “Autonomous algorithmic collusion: Q-learning under sequential pric-

ing”. In: The RAND Journal of Economics 52.3, pp. 538–558.

Lamba, Rohit and Sergey Zhuk (2022). “Pricing with algorithms”. In: arXiv preprint

arXiv:2205.04661.

44



Leslie, David S, Steven Perkins, and Zibo Xu (2020). “Best-response dynamics in zero-sum

stochastic games”. In: Journal of Economic Theory 189, p. 105095.

Loots, Thomas and Arnoud V denBoer (2023). “Data-driven collusion and competition

in a pricing duopoly with multinomial logit demand”. In: Production and Operations

Management 32.4, pp. 1169–1186.

Mazumdar, Eric, Lillian J Ratliff, and S Shankar Sastry (2020). “On gradient-based learning

in continuous games”. In: SIAM Journal on Mathematics of Data Science 2.1, pp. 103–

131.

Meylahn, Janusz M and Arnoud V. den Boer (2022). “Learning to collude in a pricing

duopoly”. In: Manufacturing & Service Operations Management 24.5, pp. 2577–2594.

Milgrom, Paul and John Roberts (1990). “Rationalizability, learning, and equilibrium in

games with strategic complementarities”. In: Econometrica: Journal of the Econometric

Society, pp. 1255–1277.

– (1991). “Adaptive and sophisticated learning in normal form games”. In: Games and

economic Behavior 3.1, pp. 82–100.

Palis Jr, J, W de Melo, et al. (1982). “Geometric Theory of Dynamical Systems”. In.

Papadimitriou, Christos and Georgios Piliouras (2018). “From nash equilibria to chain

recurrent sets: An algorithmic solution concept for game theory”. In: Entropy 20.10,

p. 782.

Plappert, Matthias et al. (2017). “Parameter space noise for exploration”. In: arXiv preprint

arXiv:1706.01905.

Possnig, Clemens (2022). “Learning to Best Reply: On the Consistency of Multi-Agent

Batch Reinforcement Learning”. url: https : / / cjmpossnig . github . io / papers /

marlbatchconv_CPossnig.pdf.

Puterman, Martin L (2014). Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons.

Robbins, Herbert and Sutton Monro (1951). “A stochastic approximation method”. In: The

annals of mathematical statistics, pp. 400–407.

Salcedo, Bruno (2015). “Pricing algorithms and tacit collusion”. In: Manuscript, Pennsyl-

vania State University.

45

https://cjmpossnig.github.io/papers/marlbatchconv_CPossnig.pdf
https://cjmpossnig.github.io/papers/marlbatchconv_CPossnig.pdf


Schulman, John et al. (2017). “Proximal policy optimization algorithms”. In: arXiv preprint

arXiv:1707.06347.

Watkins, Christopher John Cornish Hellaby (1989). “Learning from delayed rewards”. In.

Yang, Tianpei et al. (2021). “Exploration in deep reinforcement learning: a comprehensive

survey”. In: arXiv preprint arXiv:2109.06668.

46


	1. Introduction
	Related Literature

	2. Multi-Agent Learning
	3. Long Run Behavior: Main Results
	4. Learning to Collude
	4.1. Binary State Variables
	4.2. Two Fundamental Families of Binary State Variables
	4.3. Relationship to the Best Equilibrium

	5. Conclusion
	Appendix A. Proofs
	Proof of Theorem 1
	Proof of Theorem 2]
	Proof of Proposition 1
	Proof of Proposition 2]
	Proof of Lemma 1
	Proof of Lemma 2]
	Proof of Proposition 3]

	References

