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1. The Algorithm Class

In this section, I provide the general reinforcement learning family the analysis of sections

2-3 in the main text applies to. There are N algorithmic agents. Agents observe states on

some fixed, finite state space S with |S| = L, and make per period choices (actions) in a

compact interval Xi. Let Xi = XL
i , with policy profile space X = ×i∈IXi. Agents then

follow a fixed rule (algorithm) to update their strategy profiles over time.

Definition 1. Each agent updates their policy according to the following adaptive procedure:

ρin+1 ∈ ρin + αt

[
F i(ρn) +Bi

n

]
,

where αn > 0 is a decreasing stepsize sequence, F (ρn) is a (possibly multivalued) mapping,

and Bi
n represents an error term.

I stack the above iteration over i to get to the representation of study:

ρn+1 ∈ ρn + αn [F (ρn) +Bn] . (1)

For stepsizes, we assume:

Assumption 1 (Robbins-Monro Condition). αn → 0 with

∞∑
n=0

αn = ∞;
∞∑
n=0

α2
n <∞.

The iteration is generalized to an inclusion, as can be the case when F i represents an

argmax, which corresponds to the ACQ-algorithm presented in the main text. The class of

RL algorithms studied here is determined by restrictions on F (ρ) and Bi
n. Whenever there is

multivaluedness, I allow the algorithm to pick arbitrarily. In our limiting characterization,

this will show up as the possibility of multiple solutions (see Filipov (1988)), which will not

affect the limiting statements.

Remark 1. The following are two important examples of what behavior Bt can be allowed

to take:
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(1) Bn = 0 for all n and F (ρ) is a Lipschitz-continuous function, we are in the familiar

territory of Robbins-Monro algorithms for which the asymptotic behavior is well

known (see chapter 2 in Borkar (2009)).

(2) Bn is a martingale-difference noise with respect to some filtration Fn, with bounded

second moment. This error term could be the result from an estimation method to

estimating F (ρ) consistently. This scenario can again be readily analyzed using the

methods developed in Borkar (2009), chapter 2.

Considering the iteration (1), we can see that F (ρt) features importantly as a map-

ping that provides the reinforcement of the iteration profile ρt. In many scenarios, F (ρ)

represents a performance criterion (or criterion function) based on market and opponent

conditions that are not known to the algorithm designer and must be estimated. F (ρ) thus

becomes an estimation target, and Bt can then be seen as the resulting estimation error.

First, I introduce the class of performance criteria F (ρ), and what kinds of approximation

methods can be considered here. The family of functions used to approximate F (ρ) can

be allowed to not contain the estimation target, leading to asymptotically biased criterion

function estimators. The long run characterisation result will later be shown to be robust

to a certain family of biases. This robustification means it is sufficient for researchers to

verify smoothness and bound a possible asymptotic bias, without needing to know the

specific functional form of the bias. The following constructs the family of bias functions

that the results extend to:

For γ > 0, let Bk
γ be the set of Ck functions with bounded derivatives :

Bk
γ =

{
g : X 7→ RnL | sup

x∈X
∥g(x)∥+

k∑
j=1

sup
x∈X

∥Djg(x)∥ ≤ γ
}
, (2)

where Djg represents the j’th derivative.

Definition 2 (Candidate performance criteria). Define the set M1 of (possibly multivalued)

maps G with domain X ⊆ Rk and range P [R] for R ⊆ Rk s.t.

(i) G(x) ⊂ R is convex, compact valued.

(ii) There exists c > 0 such that sup{∥y∥ : y ∈ G(x)} ≤ c(1 + ∥x∥) for all x ∈ X, i.e.

linear growth.
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(iii) There is a union of connected sets Ck ⊆ X of positive measure, US =
⋃

k Ck, such

that G(x) is single-valued and C1 for x ∈ US.

Note that, with some abuse of notation, C1 ⊂ M1. We assume that US contains hy-

perbolic rest points, which can then be treated in the main results. This would e.g. be

true under ACQ-learning, but also under gradient schemes as outlined in the end of this

section. Define the distance between points x and sets A as

d(x,A) = inf
x′∈A

∥x− x′∥.

We are ready for the definition of criterion function approximators to which this analysis

applies.

Definition 3 (C1 Approximation). hhh

Let Y be some space of observations (datasets) Dn to be used to approximate a mapping.

Given γ > 0, bias function g ∈ B1
γ, say that a function approximation operator Ag :

M1 × Y 7→ M1 is a C1 Approximation of a performance criterion F ∈ M1 if there is an

integer N > 0 such that one can write for all n ≥ N :

(i) For all ρ ∈ X,

Ag[F,Dn](ρ) = Fg(ρ) + δn,

where Fg(ρ) ∈ M1 such that

sup
z∈Fg(ρ)

d
(
z, F (ρ)

)
< γ,

and δn ∈ Rk a noise term,

(ii) For all ρ ∈ US,

Ag[F,Dn](ρ) = F (ρ) + g(ρ) + δn,

with g ∈ B1
γ,

(iii)

E
[
∥δn∥

]
= o(bn),
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where bn → 0 is a sequence satisfying the following: there exists b′n with b′n
bn

→ 0, and

b′n satisfies Assumption 1.

(iv)

sup
n≥0

E
[
∥δn∥2

]
<∞.

One can interpret g(ρ) as representing the bias part of the function approximation, and

δn as a random variable such that E[∥δn∥2] represents the variance part. Points (iii) and

(iv) bound the speed of convergence and variance of the error term δn to ensure that our

characterization technique used in main results to come goes through. In fact, (iii) is useful

as long as we have that the stepsize αn in Definition 1 satisfies limn→∞
αn

bn
= 0. Thus, given

a performance-criterion estimator satisfying Definition 3, choose αn so that this is satisfied.

In the case of classical model-free Q learning (Watkins (1989)), Dn only needs to consist

of (sk, ak, rk, sk+1)
n
k=1, i.e. past observations of states, actions, payoffs, state transitions,

and the initial Q-matrix.

Generally, one can think of Ag[F,Dn](·) as a function approximation to the performance

criterion of interest F , with bounded errors that can be approximated by a small C1 function

after enough data (large n) has been accumulated. Fix small γ > 0 and observation spaces

Y i. We can now state the following assumption that, together with definitions 2 and 3

characterizes the algorithm class that can be studied here.

Assumption 2. hh

(i) Let the bias functions gi ∈ B1
γ.

(ii) Let Di
n ∈ Y i be a sequence of datasets.

(iii)

Bi
n = Ai

gi [F
i, Di

n+1](ρt)− F i
g(ρn) +M i

n+1,

where Ag[F,Dn] is a C1 Approximation of performance criterion F (ρ) ∈ M1.

(iv) Stacked version of Bi
n:

Bn = Ag[F,Dn+1](ρn)− Fg(ρn) +Mn+1.
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(v) Fn is the σ-field generated by {ρn, Dn,Mn, ρn−1, Dn−1,Mn−1, . . . , ρ0, D0,M0}, i.e. all

the information available to the updating rule at a given period n.

(vi) Mn+1 is a Martingale-difference noise. There is 0 < M̄ <∞ and x > 2 such that for

all n

E[Mn+1 |Fn] = 0; E
[
∥Mn+1∥q | Fn

]
< M̄, F0 − almost surely.

(vii) There exists a continuous function

Ω : US 7→ O(X),

where O(X) is the space of positive definite matrices given vectors in X, such that for

all n

E[Mn+1M
′
n+1 |Fn] = Ω(ρn),

whenever ρn ∈ US.

(viii) Write δn = Ag[F,Dn+1](ρn)− Fg(ρn). Then for all n′ < n′′, ∥δn′∥, ∥δn′′∥ are uncorre-

lated conditional on Fn′.

We have discussed points (i) − (iv). Point (v) constructs an increasing sequence of σ-

fields, which in turn are used in the construction of the bounded Martingale-error term of

(vi). This construction and assumption (vi) are common in the stochastic approximation

literature concerned with the limiting behavior of stochastic difference equations (e.g. see

Borkar (2009)). Point (vii) ensures that at minimum, errorsMn+1 generate enough noise so

that any direction within a small open ball around ρn will be visited by ρn+1 with positive

probability, given Fn. This fact will prove useful in deterring the process from converging

to unstable equilibria, and has been used e.g. in Benäım and Faure (2012). Point (viii) is

analogous to the martingale-property of Mn+1, in that it ensures that the variance of sums

of ∥δt∥ be bounded. These sums represent the accumulated estimation error, which need

to vanish probabilistically in order for the ODE approximation to have any bite.

Remark 2. Note that Assumptions 1-5 in the main text are sufficient for the ACQ al-

gorithm defined there to be within the above family. Most points are immediate. Based

on Assumption 3 in the main text, define ∥δin∥ = C
(
χi
n

) 1
β . Then Assumption ?? (ii) is
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sufficient for Definition 3 (iii) to be satisfied, by Jensen’s inequality and since β > 1.

Assumption 3 (iv) in the main text implies Assumption 2 (viii).

1.1. Gradient-type Algorithms

Here, I give a brief overview of the kind of gradient-type algorithms that are included in

my class of algorithms. First, a few definitions are in order:

For any i ∈ I, let X9i = ×j ̸=iXj. Recall that expected future discounted payoffs

W i(ρi, ρ9i, s0) given stationary strategy profiles [ρi, ρ9i] ∈ X are defined as:

W i(ρi, ρ9i, s0) = E
∞∑
t=0

δtui(ρ(st), st), (3)

where the expectation is made over the state transitions.

Then define

▽W i(ρi, ρ9i, s0) ∈ Rk,

as the gradient with regard to policies of agent i’s long term payoff evaluated at [ρi, ρ9i]. By

abuse of notation, write ▽W (ρ) as the stacked gradients of all agents, where without much

loss one can suppress the dependence on initial states when assuming that the state variable

is irreducible, as in the main text. It is without much loss since stability properties of any

differential Nash equilibrium will be independent of the initial state under irreducibility.

Now define for ρ ∈ X

FD
S (ρ) = ▽W (ρ), (4)

as the state dependent gradient dynamics. Take an iteration ρn and its respective function

estimation target F as denoted in (1). If F = F S
D, one can call the RL iteration ’Gradient

Equivalent’.

For Gradient Equivalent iterations, if there is no asymptotic bias in the estimation of the

gradient (g(ρ) = 0), the results here match the results in Mazumdar, Ratliff, and Sastry

(2020), but note that we study the possibility of repeated game strategies, which is not

explicitly done there. Further, as noted in the introduction, the results extend Mazumdar,
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Ratliff, and Sastry (2020) to the more commonly observed situation of non-vanishing biased

function estimators.

2. Proofs for the general Algorithm Class

Recall the following definition:

Definition 4. Given some ODE ρ̇ = f(ρ), let ρ∗ be a rest point of f(ρ). Let Λ =

eigv[Df(ρ∗)] the set of eigenvalues of the linearization of f at ρ∗. For a complex num-

ber z, let Re[z] ∈ R be the real part. ρ∗ is

• Hyperbolic if Re[λ] ̸= 0 holds for all λ ∈ Λ.

• Asymptotically stable if Re[λ] < 0 holds for all λ ∈ Λ.

• Linearly unstable if Re[λ] > 0 holds for at least one λ ∈ Λ.

Theorem 1

The first result extends Theorem 1 in the main text:

Theorem 1. Let ρ∗ ∈ US be asymptotically stable for FS. Then for all γ small enough and

all g ∈ B1
γ there is a profile ρg such that

(1) supg∈B1
γ
|ρg − ρ∗| → 0 as γ → 0.

(2) P[LS,g = {ρg}] > 0.

Proof. Notice that accordingly, rest point ρg may not be an exact Nash equilibrium of the

underlying game, but an ε-equilibrium:

Definition 5. A profile ρ is an ε-equilibrium if for all players i all individual profiles ρ′ ∈ X

and states s ∈ S

W i(ρ, s) ≥ W i(ρ′, ρ9i, s)− ε.

The implied statement in a game as e.g. outlined in section 4 of the main text would

then be:

Corollary 1. Let ρ∗ ∈ E be asymptotically stable for FS. Then for all γ small enough and

all g ∈ B1
γ there is a ε̄ > 0 and a profile ρg such that
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(1) ρg is an ε-equilibrium for all ε ≥ ε̄.

(2) supg∈B1
γ
|ρg − ρ∗| → 0 as γ → 0.

(3) P[LS,g = {ρg}] > 0.

Now to the proof: Throughout we pick a stepsize sequence αn s.t. Assumption 1 holds

and limn→∞
αn

bn
= 0 for bn given in Definition 3 (iii). First, we prove the following result

that employs known techniques from stochastic approximation theory.

First, a few definitions are in order. Take a correspondence G(x) ∈ M1, where we let

the domain be X ⊆ Rk for some k ≥ 1. The following Definition can be found in Benäım,

Hofbauer, and Sorin (2005, Section 3.3):

Definition 6. hh

(1) Given a set A ∈ X and x, y ∈ A, we write x ↪→A y if for every ε > 0 and T > 0,

there exists an integer n ∈ N, solutions x1, ..., xn to ẋ ∈ G(x)1, and real numbers

t1, ..., tn greater than T such that:

a) xi(s) ∈ A for all 0 ≤ x ≤ ti, and for all i = 1, ..., n,

b) ∥xi(ti)− xi+1(0)∥ ≤ ε for all i = 1, ..., n− 1,

c) ∥x1(0)− x∥ ≤ ε and ∥xn(tn)− y∥ ≤ ε.

(2) A set A ∈ X is said to be internally chain transitive (ICT) if A is compact and

x ↪→A y holds for all x, y ∈ A.

One can think of chains as described in this definition as a generalization to periodic

orbits of an ordinary differential equation (ODE), where solutions to the ODE are allowed

to take on arbitrarily small jumps. This generalization turns out to be very useful in the

description of long run behavior of discrete-time stochastic systems.

Importantly, ICT sets include rest points and limit cycles (if they exist). Consider

Papadimitriou and Piliouras (2018) for an intuitive discussion. The following result shows

why these sets are of importance in our analysis:

Proposition 1. Almost surely, LS,g is an ICT set of the differential inclusion

ρ̇ ∈ Fg(ρ(t)),

1Recall that G(x) is an inclusion, so uniqueness of solutions cannot be guaranteed.
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where Fg(ρ(t)) ∈ M1 satisfies Definition 2 (i), (ii).

Proof. The algorithm (1) can be written as

ρn+1 ∈ ρn + αn [Fg(ρn) + δn +Mn+1] , (5)

where δn = Ag[F,Dn](ρn)− Fg(ρn).

We can now show first that iteration 5 is a perturbed solution to ρ̇ ∈ Fg(ρ(t)) as defined

in Benäım, Hofbauer, and Sorin (2005, Definition II). The approach is to construct a linear

interpolation of (5), and show that this will shadow solutions to ρ̇ ∈ Fg(ρ(t)) asymptotically,

for large enough t. Following the notation in Hofbauer and Sandholm (2002), introduce:

τ0 = 0; τn =
n∑

i=1

αi; m(t) = sup{k ≥ 0 : τk ≤ t}.

Then, construct the interpolation as

X(τn + s) = ρn + s
ρn+1 − ρn
αn+1

, s ∈ [0, αn+1]. (6)

Following the proof of Hofbauer and Sandholm (2002, Proposition 1.3), we only need to

take care of the additional term δn present in iteration 5 - but this can be done analogously

to the proof of Proposition 4 of the main text. The result follows. □

Now, since payoffs are differentiable around ρ∗, point (1) of Theorem 1 follows as long

as ρg and ρ∗ are close. For point (2), we will prove something more general: as long as ρ∗

is hyperbolic (c.f. Definition 4), point (2) holds.

This follows because when ρ∗ is hyperbolic, there is a neighborhood U around 0 such

that F has a differentiable inverse on U . Next, note that ρg solves

F (ρg) + g(ρg) = 0.

Since ∥g∥1 ≤ γ, for γ small enough, F (ρg) ∈ U must hold. Then there is some LF−1 > 0

such that

∥ρg − ρ∗∥ = ∥F−1(F (ρg))− F−1(0)∥

≤ LF−1∥F (ρg)∥ ≤ LF−1γ,
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where the first inequality follows because F−1 is differentiable and F (ρ∗) = 0, and the

second by the definition of F (ρg). Since the right hand side is independent of g, the bound

is uniform.

For point (3), we first need to verify that all ρg close enough to ρ∗ must also be asymp-

totically stable. The next Lemma gives a more general result:

Lemma 1. Suppose ρ∗ is hyperbolic. Let DF (ρ), DFg(ρ) be the Jacobian of F, Fg, respec-

tively. Then the eigenvalues of DFg(ρ
g) converge to the eigenvalues of DF (ρ∗) uniformly

over g ∈ B1
γ as γ → 0. Thus, for small enough γ, ρg has the same stability properties as

ρ∗.

Proof. I will show that eigenvalues of a hyperbolic matrix DF (ρ∗) vary continuously in C1

perturbations g to F .

Palis Jr, Melo, et al. (1982, Proposition 2.18) shows that eigenvalues vary continuously

for any matrix A. Thus, if ∥DF (ρ∗)−DFg(ρ
g)∥ is small enough, the eigenvalues of the two

matrices must be close to each other. Now write

∥DF (ρ∗)−DFg(ρ
g)∥ = ∥DF (ρ∗)−DF (ρg)∥+ ∥Dg(ρg)∥

≤ ∥DF (ρ∗)−DF (ρg)∥+ γ,

where the equality follows from the definition of Fg. Since DF is continuous, and ρg → ρ∗

uniformly for g ∈ B1
γ as γ → 0 (see above proof of point 2), we get that

sup
g∈B1

γ

∥DF (ρ∗)−DFg(ρ
g)∥ → 0

as γ → 0. Then applying Palis Jr, Melo, et al. (1982, Proposition 2.18) finishes the

result. □

Since we know that all ρg must be asymptotically stable for γ small enough, one can

apply Faure and Roth (2010, Theorem 2.15) . To prove convergence to an attractor {ρg}

with positive probability, a stronger result than Proposition 1 is first needed:

Assumption 3 (Condition 11, Faure and Roth (2010)). There exists a map ω : R3
+ 7→ R+

such that
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(1) For any ε > 0, T > 0,

P

(
sup
m′≥n

sup
m′≤k≤m(τm′+T )

∥∥∥∥∥
k−1∑
i=n

αi+1

(
δi+1 +Mi+2

)∥∥∥∥∥ > ε

∣∣∣∣∣ Fn

)
≤ ω(n, ε, T ),

almost surely in F0.

(2) limn→∞ ω(n, ε, T ) = 0.

Faure and Roth (2010, Proposition 2.16) states that Condition 11 above is satisfied for

our Mn+1 martingale difference sequence (i.e. if δn = 0 for all n). I show next that this

result extends to our case of (5):

Lemma 2. Suppose δn,Mn satisfy Definition 3 and Assumption 2. Then condition 11 is

satisfied.

Proof. Note first that ∥∥∥∥∥
k−1∑
i=n

αi+1

(
δi+1 +Mi+2

)∥∥∥∥∥
≤

∥∥∥∥∥
k−1∑
i=n

αi+1

(
Mi+2

)∥∥∥∥∥+
∥∥∥∥∥

k−1∑
i=n

αi+1

(
δi+1

)∥∥∥∥∥
= Rn +Ψk

n,

similarly as stated in the proof above. For Rn, Proposition 2.16 in Faure and Roth (2010)

immediately applies, as it only requires the Robbins-Monro condition on αn, and that

Assumption 2 (vi) is satisfied for Mn. The remaining term Ψk
n can be treated analogously

to the proof of Theorem 1 in the main text. □

Finally Faure and Roth (2010, Theorem 2.15) states that if condition 11 is satisfied,

P[LS,g = {ρg}] > 0 holds as long as {ρg} is attainable by the process ρn. This can be

verified analogously to the approach in the proof of Theorem 1 of the main text. Thus,

Faure and Roth (2010, Theorem 2.15) applies, concluding this proof. □

Theorem 2

The following generalizes Theorem 2 of the main text:
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Theorem 2. Let ρ∗ ∈ US be linearly unstable for FS. Then for all γ small enough and all

g ∈ B1
γ there is an open neighborhood Uγ with ρ∗ ∈ Uγ such that

P[LS,g ∈ Uγ] = 0.

Proof. The proof will use the Hartman-Grobman Theorem (c.f.Chicone (2006, Theorem

4.8)), which connects the flow of a nonlinear ODE in the neighborhood of a hyperbolic rest

point to the flow of a linearized ODE. Since it works fully locally, our analysis only requires

that F (ρ) be single valued and C1 in a neighborhood of rest point ρ∗, and we can allow

F (ρ) to be multivalued otherwise. Call this neighborhood Uρ∗ .

First, define invariant sets for given differential equations:

Definition 7. Let z(t, z0) be the solution to some given differential equation ż = f(z) with

initial value z0. Then a set S

• is invariant for f , if z(t, z0) ∈ S holds for all t ∈ R and all z0 ∈ S.

• isolated invariant for f if there is an open set N such that S ⊂ N and

S = {z′ : z(t, z′) ∈ N ∀t ∈ R}.

Given a g ∈ B1
γ, we know from Proposition 1 that only ICT sets (recall Definition 6)

subset of a neighborhood of ρg are candidates to being limiting points of the algorithm

(1). The singleton {ρg} is an ICT set, and we show first that this is a limiting set of the

algorithm with probability zero. Then we go on to show that for small enough γ, no other

ICT sets can exist in a neighborhood around ρ∗, which finishes the proof.

1) {ρg} is a limiting set of (5) with probability zero.

Note that by Lemma 1, there are γ > 0 small enough such that all ρg for g ∈ B1
γ are

linearly unstable, just as ρ∗. We can thus apply Benäım and Faure (2012, Theorem 3.12) to

prove P[LS,g = ρg] = 0 in the following. Importantly, note that the conditions and analysis

sufficient for the proof of Benäım and Faure (2012)’s Theorem are local with respect to ρg.

Thus, the fact that Fg is globally potentially multivalued is of no importance, since in a

small enough neighborhood around ρg it must be single-valued and C1.
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Benäım and Faure’s result is concerned with time-interpolations of stochastic differential

inclusions F (ρ) ∈ M1, such as (6). Their Theorem 3.12 states, translated in terms of this

paper, that under an Assumption the authors refer to as Hypothesis 2.2, and Assumption

2 (vi), (vii), the result to be proved here holds true.

In fact, Benäım and Faure (2012, Hypothesis 2.2) is equivalent2 to Assumption 3, which

was shown to hold for our algorithm in Lemma 2. Thus, the result applies, concluding the

proof.

2) No other ICT sets exist in a neighborhood of ρ∗ and ρg.

We will prove that there are no other invariant sets in such a neighborhood. Since ICT

sets are subsets of invariant sets, this will complete the proof.

We can use Hartman-Grobman to show that there are open neighborhoods Ng, N0 with

ρ∗ ∈ N0, ρ
g ∈ Ng such that ρ∗, ρg are isolated invariant sets in their respective neighbor-

hoods. These neighborhoods are nontrivial for all γ small enough, which follows from both

ρ∗, ρg being hyperbolic:

By Hartman-Grobman and hyperbolicity there exists a homeomorphism H on a neigh-

borhood N ⊆ Uρ∗ of ρ∗ with H(ρ∗) = ρ∗ such that

H(ϕ(t, ρ)) = ψ(t,H(ρ)),

where ϕ(t, ·) is a solution (flow) to the differential inclusion ρ̇ ∈ F (ρ), and ψ(t, ·) is the

solution to the ODE ẏ = DF (ρ∗)(y − ρ∗). Given a neighborhood U ⊆ N of ρ∗, define

inv(U) = {ρ ∈ U : ϕ(t, ρ) ∈ U ∀t ∈ R}.

We will show that {ρ∗} = inv(U), and therefore, it is isolated invariant.

Notice that inv(U) can be rewritten as

inv(U) = {y ∈ H(U) : H−1(ψ(t, y)) ∈ U ∀t ∈ R} = {y ∈ H(U) : ψ(t, y) ∈ H(U)∀t ∈ R},

2See Faure and Roth (2010, Remark 2.14)
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since H is bijective. We know that ρ∗ is an isolated invariant set for the linear ODE solution

ψ(t, y) = CetDF (ρ∗)y + ρ∗. Thus, we must also have that

inv(U) = ρ∗,

and {ρ∗} is an isolated invariant set for ϕ(t, ρ).

Since ρg are hyperbolic for γ small enough, an analogous argument gives us that ρg

are isolated invariant also. Let Ng be the neighborhood on which the homeomorphism is

defined that connects flows of Fg to flows of the linearized system DFg(ρ
g). By definition,

ρg ∈ Ng, and we know that ρg is isolated invariant in Ng. We are left to show that for γ

small enough, for all g ∈ B1
γ, ρ

∗ ∈ Ng:

To prove this, we will argue that each Ng contains a ball Bg
z (ρ

g), for which the radius

z > 0 can be lower bounded by a number that depends only on the eigenvalues of DF (ρ∗)

and γ. First, we need an auxiliary Lemma to show how eigenvalues of DFg(ρ
g) vary

continuously in γ. First, some more notation:

For small enough γ, all ρg are hyperbolic when g ∈ B1
γ. Fix such a g. Define ρl > 0 to be

the smallest positive eigenvalue of DFg(ρ
g), and ρu < 0 be the largest negative eigenvalue

of DFg(ρ
g). Now let ag ∈ (0, 1) be any number such that

max {eρu , e−ρl} < ag < 1.

For the original system DF (ρ∗), let a0 ∈ (0, 1) be any such number.

Lemma 3. For any δ > 0 with a0 < 1 − δ there exists γ > 0 such that for all γ ∈ (0, γ],

there is a set of {ag}g∈B1
γ
as defined above with

sup
g∈B1

γ

|ag − a0| < δ.

Proof. Apply Lemma 1. Since there is a one-to-one mapping between eigenvalues and

{eρu , e−ρl}, one can find numbers ag. The result follows. □

Given this continuity in eigenvalues, we can prove the following Lemma to finish our

result:
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Lemma 4. Suppose ρ∗ is hyperbolic for F . Fix a small z > 0. Then there is γ̄ such that

for all γ ≤ γ̄, and all g ∈ B1
γ, there is Bg

z (ρ
g) ⊆ Ng with z ≥ z.

Proof. For small enough γ, all ρg are hyperbolic when g ∈ B1
γ. Fix such a g. Given some

ε > 0, let rε be defined as

sup{r > 0 : ∥ρ− ρg∥ < r; ∥DFg(ρ)−DFg(ρ
g)∥ < ε}.

Since DFg is continuous, rε > 0 must hold. Pick ag ∈ (0, 1) as defined previously.

Then define

εg =
1− ag
ag

> 0.

By Palis Jr, Melo, et al. (1982, Lemmas 4.3 and 4.4), Brε(ρ
g) ⊆ Ng, if ε < εg.

We are left to show that rε can be made to depend only on the eigenvalues of DF (ρ∗)

and γ. Notice that small enough z > 0 pins down the δ > 0 referred to in Lemma 3: Let

ẑ(γ) = inf
γ∈(0,γ]

inf
g∈B1

γ

εg.

For δ > 0 small enough, choose γ > 0 such that Lemma 3 holds. It follows from the Lemma

that ẑ(γ) > 0. Then any z < ẑ(γ) satisfies our conditions and the conclusion follows. □

Now recall that by the proof of Theorem 1 point 2, ρg → ρ∗ uniformly over g ∈ B1
γ as

γ → 0. Thus, there is γ small enough for which supg∈B1
γ
|ρg −ρ∗| < z and therefore ρ∗ ∈ Ng

for all g ∈ B1
γ. Let Uγ = ∩g∈B1

γ
Ng. Since ρg for g ∈ B1

γ are isolated invariant in Uγ by

construction, the result follows. □

3. Numerical Example and Simulations

I construct a conditional p.d.f. g(y;X), and convex cost resulting in a regular payoff

function. For this game, the unique stage game Nash equilibrium xN is statically stable,

but dynamically unstable under a range of DS-policies. Furthermore, under this conditional

p.d.f., Proposition 2 of the main text applies.

Fix a discount factor δ = 0.98. All numbers given in the example are rounded to two

decimal points. Given domain X = [0, 1], and price support Y = [0, 1], Figure 1 shows

conditional c.d.f. and η(y,X) of the stage game.
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Figure 1. Left: C.d.f. conditional on different aggregate quantities. Right:

η(y,X) for different aggregate quantities X.

One can verify numerically that here, BR′
0(xN) = −0.39, implying static stability of xN .

To computationally find V , note that g(y;X) does not satisfy MRLP. While for this p.d.f.,

η(y,X) has a unique interior3 zero as in the definition of G (see Definition 9 in the main

text), η(y,X) is not everywhere decreasing in y. However, η(y,X) is single-peaked on the

subsets [0, y(X)), (y(X), Y ]. An optimal assignment of punishment and reward regions as

discussed in Section 4.3 of the main text is therefore still a binary partition of the price

space - only that each state’s punishment region is now described by two thresholds, instead

of the previous single one. Let Ωs =
[
z
(1)
s , z

(2)
s

]
⊂ Y for s ∈ {A,B} be the ‘switching’ region

in each state. Thus, when a price realizes in this region, states switch. It follows that here,

Pss′(X) = P[p ∈ Ωs | X], whenever s ̸= s′. One can generalize the approach of Section 4.3

in the main text (see equation (9) there) to an optimization program where V is maximized

over (zs)s∈{A,B}, and E∗(z), EK(z) are re-defined accordingly, for z ∈ Y4. It is quick to

check that Proposition 3 of the main text extends to this case.

Thus, to numerically find V , I conduct a symmetric equilibrium search to determine

E∗(z) for a range of z ∈ Y4. Since each agent’s value functionW (σ, σ′, z) is concave in their

policy σ, I conduct a search of symmetric zeros of the gradient of W (σ, σ′, z) with respect

to σ. I consider a symmetric equilibrium to be found if max
[∣∣∣∇W (σ, σ′, z)

∣∣∣
σ′=σ

∣∣∣] ≤ 10−14.

3Interior isolated zero, which is sufficient here.
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To visualize the possible values of best equilibria over a range of thresholds on a heatmap,

define

V
(
z(1)
)
= max

σ∈E∗(z)

(z
(2)
A ,z

(2)
B )∈Y2

W (σ, σ, z),

Gain
(
σ, z(1)

)
= 100

(V (z(1))
uN

− 1
)
,

where z(1) = (z
(1)
A , z

(1)
B ). Thus, V

(
z(1)
)
is the best equilibrium given fixed lower bounds z(1)

of ΩA,ΩB. Gain
(
σ, z(1)

)
is the percentage gain in long run payoffs of V

(
z(1)
)
versus the

repetition of the static Nash payoff uN .

Figure 2 shows a heatmap of Gain
(
σ, z(1)

)
for varying z(1) =

(
z
(1)
A , z

(1)
B

)
. All eigenvalues

of the associated linearized FS(ρ) at these equilibria are less that 1 in absolute value, hence

stable. Thus, each equilibrium profile will be learned with positive probability under their

respective state variable generated from the thresholds given.

Figure 2. Gain(σ, z) over varying thresholds z = (ya, yB). The orange diamond

indicates the location of the overall best equilibrium, V .

I finish by providing a simulation study of ACQ learners playing this game. Let z∗ be

the thresholds that support V , the computationally best equilibrium. Fix S∗ to be the

DS-state variable with transition function using ΩA,ΩB as switching regions pinned down

by z∗. On the other side, fix S1R to be the 1R-state variable (transitions as in (6) in the
17



main text), under some threshold pair z1R = (zA, zB). The simulation study can now be

used to see what ACQ-learners will learn if they observe either state variable. Recall from

the main text the defintion of the ACQ learning rule:

ρit+1(s) ∈ ρit(s) + αt

[
argmax

a′∈X
Qi

t+1(s, a
′)− ρit(s) +M i

t+1

]
, (7)

This simulation should be seen as a device to get intuitions about the system dynamics after

many iterations of the algorithm have passed. The characterization of long-run behavior

given in Section 1 is used here: instead of simulating the estimation part of Qt of the

algorithm given above, I take Assumption 2 seriously, and simulate iteration (7) in the

following way:

For i ∈ {1, 2} and all s,

ρit+1(s) ∈ ρit(s) + αt

[
argmax

q′∈X
Qi∗(s, x′, ρ9it )− ρit(s) +M i

t+1

]
, (8)

where αt = t−0.6 satisfies the Robbins-Monro Assumption 1, and M i
t+1 ∼ N(0, .1) is an

i.i.d mean-zero Normal noise variable with variance 0.25. Notice that (8) replaces Qt given

in (7) by its estimation target Q∗. Thus, this iteration represents a noisy discretization of

F rather than a simulation of a feasible model-free algorithm. As the results in Section

1 tell us, for algorithms in the class studied in this section this simulation will give us an

equivalent representation of long-run trajectories of ρt to a full simulation of (7) when t is

large.

In each simulation exercise, I run 960 separate simulations, and each for 106 periods. As

will be seen, depending on the state variables of the algorithms involved, iterations move

closer to the equilibrium in the neighborhood of which they started at, or move away from

it, confirming the theory developed in this paper.

First, I consider the result given in Corollary 2 of the main text. Since in this example,

the Nash equilibrium is statically stable, its repetition under 1R-policies ρN is also stable.

Thus, one would expect that once algorithms using 1R-state variables come close to the

Nash equilibrium, they should stay close to it forever, and in the long run converge to it.

This is what is evidenced by Figure 3. Since the state space is binary, the two algorithms’

policies can be represented as points in the X2-plane. I now plot simulation outcomes in
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this plane, so that each simulation run is represented by two points in the plane spanned

by ρ(A), ρ(B).

Figure 3. Final policies as dots ρiT , for i = 1, 2 of 960 simulation runs, with

T = 106. These runs were initialized globally, with ρi0 drawn uniformly from X2 for

i = 1, 2. All runs converged to a close neighborhood of xN . Note that the presence

of shocks Mt+1 pushes the process to continually move around the equilibrium,

albeit in close proximity. The picture is analogous under a local initialization,

with ρi0 drawn from a ball centered at xN , at radius 0.01∥xN∥..

Now contrast this result with an analogous study given S∗. Even though the neighbor-

hoods of starting values used in this scenario is the same as under 1R-policies, the picture

is starkly different: none of the simulation runs converge to static Nash, which under the

new state variable ceases to be dynamically stable.

The existence of the third symmetric equilibrium is not surprising, as can be seen from

the construction of Ψ in the proof of Proposition 2 in the main text. The outcome of a

simulation with initialization centered at xN , at radius 0.01∥xN∥, are similar: 98.1% of runs
19



Figure 4. Final policies as dots ρiT after a global initialization, with ρi0 drawn
uniformly from X2 for i = 1, 2, with 960 simulation runs, with T = 106. 99.8%
of runs converged to a neighborhood of the best equilibrium σ∗ from these initial
values. The remainder, 0.2%, converged to a neighborhood of the third symmetric
equilibrium ∼ (0.3033, 0.2998), which is also stable. In both experiments, none of
the simulations approached xN in the long run.

converged to a neighborhood of σ∗. Since xN is dynamically unstable given state variable

S∗, no matter how close the starting values of the iteration are, the iteration must be pushed

away from ρDS
N as shown in the proof of Theorem 2. However, in the case of this example,

it is not only true that the iteration is pushed away, but also that it is pulled towards the

collusive equilibrium σ. This together with the results of the global initialization indicates

that the basin of attraction for the collusive equilibrium in this example is not confined to a

small neighborhood of the equilibrium but in fact quite large. This scenario also underlines

the weight of consideration that should be given to state variables used by algorithms.

Even if one forced algorithms to initialize very close to a Cournot equilibrium, they can,

given the right state variable, approach a collusive equilibrium instead.

The example was generated using the julia language (Bezanson et al. (2017)). The

following non-base packages where used in this example: Kittisopikul, Holy, and Aschan

(2022),Noack et al. (2023),Baran, Foster, et al. (2024),Pal et al. (2024),Mogensen, Villemot,

et al. (2020),Isensee, Kornblith, et al. (2024),S. G. Johnson et al. (2023).
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4. Discussion of related Literature

Firstly, Banchio and Mantegazza (2022) also consider a characterization of competing

RL algorithms and apply it to games of economic interest. The class of algorithms they

study intersects with the class studied in this paper, but there are important differences. It

is unclear that their approach can accommodate actor-critic approaches that are featured

here, as such approaches require a separate estimation technique that can introduce depen-

dence of policy parameters on histories of past observations. This is important, since the

actor-critic feature allows us to consider closely the learning of repeated game strategies,

which is not featured in the focus of Banchio and Mantegazza (2022).

Relatedly, Dolgopolov (2024) considers Q-learning in the prisoner’s dilemma game. The

author provides a novel long-run characterisation using Markov chains on a discretized ap-

proximation of the range ofQ-values, and shows how tuning of stepsize and experimentation

rate can decide whether cooperation emerges in the learning setting.

There is a recent theoretical literature on stylized models of algorithmic competition.

Lamba and Zhuk (2022) study how algorithms may learn to collude. They look at a

stylized model of algorithmic competition, in which an algorithm is represented by a policy

mapping from opponent actions to actions, which can be revised less frequently than actions

are taken. They show that no equilibrium of that game is fully competitive. Salcedo (2015)

goes along a similar direction, with an algorithm being an automaton strategy that can

only be revised less frequently than actions can be taken.

Another paper of stylized algorithmic competition is Z. Y. Brown and MacKay (2021).

They focus on the frequency with which algorithms can update prices, and let algorithms

of different adjustment speeds compete against each other. When frequency abilities are

asymmetric among algorithms, equilibrium outcomes can be collusive. Interestingly, when

firms can choose algorithms (i.e. their adjustment frequency), the equilibrium features

asymmetric frequencies.

The works mentioned above focus on different aspects of frequency of adjustment as a

stylized feature of algorithmic updates. The main text to this online appendix shows a

channel that has not been explored much in this literature: the role of state variables in

the ability of algorithms to learn collusion. This could be an interesting new starting point
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for a study of stylized algorithms. Moreover, the works above abstract away from issues

of learning and estimation, which is in contrast to this paper. An interesting aspect of

learning present here is the importance of stability of equilibria in determining what can

be learned. Stability of equilibria is tightly connected to dynamic reactions to imprecisions

and mistakes (perturbations), which are present when learning and estimation are part of

algorithmic updates.

J. Johnson, Rhodes, and Wildenbeest (2020) look into platform design under algorithmic

sellers. They investigate differing policies implemented by a platform designer wishing to

promote competition or raise their own profits. They include a simulation study of Q-

learning algorithms under different policy designs; clearly, results in this paper can be

applied to study related RL algorithms under any given platform policy. At this point, the

state of the art for general characterisations of long-run behavior of algorithms stops at

showing whether a given outcome will be learned with positive, or zero probability. Once

a more tight characterization of the distribution over outcomes supported by a profile of

algorithms is in place, one can go a step further and attempt to find the optimal platform

policy for any given algorithm profile in my class.

There is now a growing area of research lying on the intersection of the theory of learning

in games from the economics point of view, and the asymptotic theory of algorithmic

learning from the computer science side. Leslie, Perkins, and Xu (2020)’s paper is an

example of a paper intended more for economists, while applying language also common

to the computer science literature. They consider zero-sum Markov games and construct

an updating scheme related to best response dynamics that converges to equilibria of the

game. As they also keep track of separate policy and value function updates, their scheme

falls into the class of actor-critic learning rules generally, while not falling into the class

considered in this paper due to important assumptions on the updating speed differential

between policy and performance criterion used there.

Leslie and Collins (2006) introduce what they call “generalized weakened fictitious play”

(GWFP), an adaptive learning process the limits of which can be related to classical contin-

uous time fictitious play (G. W. Brown (1951)), or stochastic fictitious play (c.f. Hofbauer
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and Sandholm (2002)), depending on details of the process. Their framework allows con-

cluding asymptotic behavior of learning processes once one has shown that the process is

a GWFP process. They show that GWFP converges in games that have the fictitious play

property. Notably, that class includes zero-sum games, submodular games, and potential

games.

One can interpret results in this paper as showing that a subclass (ACQ) of the RL I

consider can be seen as a GWFP process. Therefore, one can apply Leslie and Collins (2006)

to conclude the limiting behavior of that process in games with the fictitious play property.

However, there are many repeated games of interest that do not have this property; notably

oligopoly (Cournot) games where agents learn repeated game strategies. I analyze the

learnability of collusion in oligopoly games more seriously, and therefore give a more detailed

analysis of limiting behavior in a class of games not known to have the fictitious play

property. I do this by taking seriously the fact that GWFP can in general be defined to

learn repeated game (automaton) strategies, which to the best of my knowledge has so far

only been considered under the restriction of Markov strategies for stochastic games.

Furthermore, this paper can be interpreted as casting RL competition as an equilibrium

selection mechanism. The classical literature was developed as a model to understand how

rational players may learn to play Nash equilibria, whereas here I consider real economic

agents that happen to be algorithmic and show that their behavior can be understood

through the theory of learning in games. Interestingly, among the repeated game equilib-

rium selection criteria known to me there exists none that exclude the stage game Nash

equilibrium even when it is unique, which suggests that the selection ability of competing

RL delivers new insights. I refer to Fudenberg and Levine (2009) for a thorough review

of issues regarding the theory of learning in games, including algorithmic learning and

applications of stochastic approximation.

This paper also connects to a growing strand of the computer science literature estab-

lishing convergence proofs in multi-agent algorithmic environments. The paper in that area

closest to this one is Mazumdar, Ratliff, and Sastry (2020). They establish a connection

between gradient-based learning algorithms for continuous action games and asymptotic

stability of equilibria of the underlying game. While nested in our RL class, the updating
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rules that Mazumdar, Ratliff, and Sastry (2020) consider implicitly assume that algorithms

observe each other’s per period policies, or at least observe an unbiased estimator of their

per-period value function gradient. I argue that this assumption is difficult to satisfy, es-

pecially in the case of continuous action games. In a companion paper (Possnig (2022)), I

give low-level sufficient conditions on independent algorithms so that a weakened version

of this assumption goes through. My results suggest that Mazumdar, Ratliff, and Sastry

(2020)’s results are robust to the type of bias in the gradient estimation that my RL class

allows.

Other papers related to asymptotic analysis of multi-agent systems commonly focus on

developing a specific algorithm that behaves well in some metric, allow communication

across algorithms, require information on the primitives of the game, or do not ask about

the nature of the limiting points. Notably, Ramaswamy and Hullermeier (2021) give a thor-

ough analysis of deep learning techniques for Q-functions using gradient updates, without

considering stability properties of rest points. Others focus on specific classes of games, for

example zero sum games (Sayin et al. (2021)) and show convergence of multi-agent learning

there.
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